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Semi-Supervised and Unsupervised
Deep Visual Learning: A Survey
Yanbei Chen, Massimiliano Mancini, Xiatian Zhu, and Zeynep Akata,

Abstract—State-of-the-art deep learning models are often built at the cost of collecting a large amount of labeled training data.
However, the requirement of exhaustive manual annotations may degrade the model’s generalizability when learning in the limited-label
regime. Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled
visual data. Recent progress in these paradigms has indicated the strong benefits of leveraging unlabeled data to improve model
generalization and provide better model initialization. In this survey, we review the recent advanced deep learning algorithms on
semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective. To offer a holistic
understanding of the state-of-the-art in these areas, we propose a unified taxonomy. We categorize existing representative SSL and UL
algorithms with comprehensive and insightful analysis to highlight their design rationales in different learning scenarios and
applications in different computer vision tasks. Lastly, we discuss the emerging trends and open challenges in SSL and UL to shed light
on future critical research directions.
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1 INTRODUCTION

O VER the last decade, deep learning algorithms and
architectures [1], [2] have been constantly pushing the

state of the art in a wide variety of computer vision tasks,
ranging from object recognition [3], retrieval [4], detection
[5], to segmentation [6]. To achieve human-level perfor-
mance, deep learning models are typically built by super-
vised training upon a tremendous amount of labeled train-
ing data. However, collecting large-scale labeled training
sets manually is not only expensive and time-consuming,
but may also be legally prohibited due to privacy, security,
and ethics restrictions. Moreover, supervised deep learning
models tend to memorize the labeled data and incorporate
the annotator’s bias, which weakens their generalization to
new scenarios with unseen data distributions in practice.

With cheaper imaging technologies and easier access to
web data, obtaining large unlabeled visual data is no longer
challenging. Learning from unlabeled data thus becomes a
natural and promising recipe to scale model generalization
towards practical scenarios where it is infeasible to collect
large labeled training sets that cover all types of visual
variations in illumination, viewpoint, resolution, occlusion,
and background clutter induced by different scenes, cam-
era positions, times of the day, and weather conditions.
Semi-supervised learning [7], [8] and unsupervised learning
[9], [10], [11], [12] stand out as two most representative
paradigms for leveraging unlabeled data. Built upon dif-
ferent assumptions, these paradigms are often developed
independently, but share the same aim to learn better repre-
sentations and models using unlabeled data.
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Fig. 1: An overview of semi-supervised and unsupervised
learning paradigms – both aim to learn from unlabeled data.

Figure 1 summarizes the two paradigms covered in this
survey, which both utilize unlabeled data for visual repre-
sentation learning. According to whether label annotations
are given for a small portion or none of the training data, we
categorize the paradigms as semi-supervised learning, and
unsupervised learning as defined explicitly in the following.
(a) Semi-Supervised Learning (SSL) aims to jointly learn

from sparsely labeled data and a large amount of
auxiliary unlabeled data often drawn from the same
underlying data distribution as the labeled data. In
standard closed-set SSL [8], [13], the labeled and un-
labeled data belong to the same set of classes from the
same domain. In open-set SSL [14], [15], they may not
lie in the same label space, i.e., the unlabeled data may
contain unknown and/or mislabeled classes.

(b) Unsupervised Learning (UL) aims to learn from only
unlabeled data without utilizing any task-relevant label
supervision. Once trained, the model can be fine-tuned
using labeled data to achieve better model generaliza-
tion in a downstream task [16].
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SSL & UL learning objective. Following the above defi-
nitions, let the sets of labeled data and unlabeled data be
denoted as Dl and Du. The overall learning objective for
SSL and UL can be written in a unified formulation:

min
θ

λl

∑
(x,y)∈DL

Lsup(x, y, θ) + λu

∑
x∈DU

Lunsup(x, θ), (1)

where θ refers to the model parameters of a deep neural net-
work (DNN); x is an input image and y is the corresponding
label; Lsup and Lunsup are the supervised and unsupervised
loss terms; λl and λu are balancing hyperparameters. In
SSL, both loss terms are jointly optimized. In UL, only the
unsupervised loss term is used for unsupervised model pre-
training (i.e., λl = 0). Although SSL and UL share the same
rationale of learning with an unsupervised objective, they
differ in the learning setups, leading to different unique
challenges. Specifically, SSL assumes the availability of lim-
ited labeled data, and its core challenge is to expand the
labeled set with abundant unlabeled data. UL assumes no
labeled data for the main learning task and its key challenge
is to learn task-generic representations from unlabeled data.

To facilitate the algorithmic understanding of SSL and
UL, we focus on providing a timely and comprehensive re-
view of the recent advances in leveraging unlabeled data to
improve model generalization, covering the representative
state-of-the-art methods in SSL and UL, their application
domains, to the emerging trends in self-supervised learning.
Importantly, we propose a unified taxonomy of the recent
advanced deep learning methods to offer researchers a sys-
tematic overview that helps to understand the current state
of the art and identify open challenges for future research.
Comparison with previous surveys. Our survey is related
to other surveys on semi-supervised learning [8], [13], [17],
self-supervised learning [18], [19], or both topics [20]. While
these surveys mostly focus on a single particular learning
setup [8], [13], [17], [18], non-deep learning methods [8],
[13], or lacking a comprehensive taxonomy on methods and
discussion on applications [20], our work covers a wider
review of representative SSL and UL algorithms involving
unlabeled visual data. Importantly, we categorize the state-
of-the-art SSL and UL algorithms with novel taxonomies
and draw connections among different methods. Beyond
intrinsic challenges with each learning paradigm, we distill
their underlying connections from the problem and algo-
rithmic perspectives, discuss unique insights into different
existing techniques, and their practical applicability.
Survey organization and contributions. Our contributions
can be summarized into three aspects. First, to our knowl-
edge, this is the first deep learning survey of its kind to
provide a comprehensive review of three prevalent machine
learning paradigms in exploiting unlabeled data for visual
recognition, including semi-supervised learning (SSL, §2),
unsupervised learning (UL, §3), and a further discussion on
SSL and UL (§4). Second, we provide a unified, insightful
taxonomy and analysis of the existing methods in both the
learning setup and model formulation, with an aim at un-
covering their underlying algorithmic connections. Finally,
we provide an outlook of the recent emerging trends and
future research directions in §5 to shed light on those under-
explored and potentially critical open avenues.
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unsupervised loss 
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Fig. 2: Semi-supervised learning (SSL) aims to learn jointly
from a small set of labeled and a large set of unlabeled data.

2 SEMI-SUPERVISED LEARNING (SSL)
Semi-Supervised Learning (SSL) has been studied in ma-
chine learning [8], [13] with an aim at exploiting large
unlabeled data together with sparsely labeled data. SSL is
explored in various application domains, such as image
search [56], medical data analysis [57], web-page classifi-
cation [58], document retrieval [59], genetics and genomics
[60]. More recently, SSL has been used for learning generic
visual representations to facilitate many computer vision
tasks such as image classification [26], [28], image retrieval
[61], object detection [62], [63], semantic segmentation [64],
[65], [66], and pose estimation [42], [67], [68]. While our
review mainly covers generic semi-supervised learners for
image classification [22], [26], [28], [30], the general ideas
behind these methods can also be generalized to solve other
vision recognition tasks.

We define the SSL problem setup and discuss its assump-
tions in §2.1. We provide a taxonomy and analysis of the
existing semi-supervised deep learning methods in §2.2.

2.1 The Problem Setting of SSL

Problem Definition. In SSL, we often have access to a
limited amount of labeled samples Dl = {xi,l, yi}Nl

i=1 and
a large amount of unlabeled samples Du = {xi,u}Nu

i=1.
Each labeled sample xi,l belongs to one of K class labels
Y = {yk}Kk=1. For training, the SSL loss function L for a
deep neural network (DNN) θ can generally be expressed as
Eq. (1), i.e., L = λlLsup + λuLunsup. In many SSL methods,
the hyperparameters λu in Eq. (1) is often a ramp-up weight-
ing function (i.e., λ = w(t) and t is training iteration), which
gradually increases the importance of the unsupervised loss
term during training [14], [22], [35], [36], [69]. At test time,
the model is deployed to recognize the K known classes.
See Figure 2 for an illustration of SSL.
Evaluation Protocol. To test whether an SSL model utilizes
the unlabeled data effectively, two evaluation criteria are
commonly adopted. First, the model needs to outperform
its supervised baseline that learns from merely the labeled
data. Second, when increasing the proportion of unlabeled
samples in the training set, the improved margins upon the
supervised baseline are expected to increase accordingly.
Overall, these improved margins indicate the effectiveness
and robustness of an SSL method.
Assumptions. The main assumptions for SSL include the
smoothness assumption [70] and manifold assumption [8],
[70] – the latter is also known as cluster assumption [71],
structure assumption [43], and low-density separation as-
sumption [72]. Specifically, the smoothness assumption con-
siders that the nearby data points are likely to share the
same class label. The manifold assumption considers data
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TABLE 1: A taxonomy on semi-supervised deep learning methods, including five representative families in §2.2.1 – §2.2.5.

Families of Models Model Rationale Representative Strategies and Methods

Consistency regularization

Random augmentation Π-model [21], [22], ensemble transformations [23]
Adversarial perturbation Virtual Adversarial Training (VAT) [24], [25]
MixUp MixMatch [26], ICT [27]
Automated augmentation ReMixMatch [28], UDA [29], FixMatch [30]
Stochastic perturbation Pseudo-Ensembles [31], Ladder Network [32], Virtual Adversarial Dropout [33], WCP [34]
Ensembling Temporal Ensembling [22], Mean Teacher [35], SWA [36], UASD [14]

Self-training
Entropy minimization Pseudo-Label [37], MixMatch [26], ReMixMatch [28], Memory [38]
Co-training Deep Co-training [39], Tri-training [40]
Distillation model distillation (Noisy Student Training [41], UASD [14]), data distillation [42]

Graph-based regularization
Graph-based feature regularizer EmbedNN [43], Teacher Graph [44], Graph Convolutional Networks [45]
Graph-based prediction regularizer Label Propagation [46]

Deep generative models
Variational auto-encoders Class-conditional VAE [47], ADGM [48]
Generative adversarial networks CatGAN [49], FM-GAN [50], ALI [51], BadGAN [52], Localized GAN [53]

Self-supervised learning Self-supervision S4L [54], SimCLR [12], SimCLRv2 [55]
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Fig. 3: Consistency regularization (§2.2.1) under (a) input
variations vs (b) model variations, where variations can be
induced by transformation on input data or model weights.

points lying within the same structure (i.e., the same cluster
or manifold) should share the same class label. In other
words, the former assumption is imposed locally for nearby
data points, while the latter is imposed globally based on
the underlying data structure formed by clusters or graphs.

2.2 Taxonomy on SSL Algorithms
Existing SSL methods generally assume that the unlabeled
data is closed-set and task-specific, i.e., all unlabeled train-
ing samples belong to a pre-defined set of classes. The
generic idea shared by most existing works is to assign
each unlabeled sample with a class label based on certain
underlying data structure, e.g., manifold structure [43], [70],
and graph structure [73]. We categorize the most representa-
tive semi-supervised deep learning techniques into five cat-
egories, including consistency regularization, self-training,
graph-based regularization, deep generative model, and
self-supervised learning (Figure A). We summarize these
categories of methods in Table 1 and detail their general
model formulations in §2.2.1, §2.2.2, §2.2.3, §2.2.4 and §2.2.5.

2.2.1 Consistency Regularization
Consistency regularization is a class of powerful techniques
that include a number of successful and prevalent SSL

approaches [21], [22], [25], [26], [27], [28], [29], [35], [74].
The basic rationale is to enforce consistent model outputs
under variations in the input space and (or) model space.
The variations are often implemented by adding noises,
perturbations or forming variants of the same input or
model. Formally, the consistency regularization objective in
case of input variation is defined as:

min
θ

∑
x∈D

d(p(y|x; θ), p̂(y|x̂; θ)), (2)

and in case of model variation as:

min
θ

∑
x∈D

d(p(y|x; θ), p̂(y|x; θ̂)). (3)

In Eq. (2), x̂ = qx(x; ϵ) is a variant of the original input
x, which is derived through a data transformation op-
eration qx(·, ϵ) based on certain noise process ϵ, such as
data augmentation and stochastic perturbation. Similarly, in
Eq. (3), θ̂ = fθ(θ; η) is a variant of the model θ derived
from a model transformation function fθ(·; η) based on
certain randomness η, such as stochastic perturbation on
model weights and model ensembling strategies. In both
equations, the consistency is measured as the discrepancy
d(·, ·) between two network outputs p(y|·, ·) and p̂(y|·, ·),
typically quantified by divergence or distance metrics such
as Kullback-Leibler (KL) divergence [25], cross-entropy [29],
and mean square error (MSE) [22]. See Figure 3 for an
illustration of consistency regularization.

2.2.1.1 Consistency regularization under input variations

To enforce the consistency (i.e., distributional smoothness)
under input variations as in Eq. (2), various data transforma-
tion strategies can be applied to generate different versions
of the same input – denoted as x̂ in Eq. (2). A generic
visual illustration of consistency regularization under input
variations is depicted in Fig. 3 (a). This includes techniques
ranging from simple random augmentation [21], [22], to
more advanced transformations such as adversarial pertur-
bation [25], MixUp [26], [75], as well as stronger automated
augmentation such as AutoAugment [76], RandAugment
[77], CTAugment [28] and Cutout [78]. We review these four
streams of techniques as follows.
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Random augmentation is a standard data transformation
strategy widely adopted in consistency regularization [21],
[22], [35], including adding Gaussian noise and applying
simple domain-specific jittering such as flipping and crop-
ping on image data. One of the representative SSL algo-
rithms, Π-model [21], [22], applies random data augmenta-
tion on the same input and minimizes a consistency regu-
larization term (i.e., MSE) between two network outputs. A
more recent approach named “ensemble transformations”
[23] introduces more diverse data augmentation on input
images, including spatial transformations (i.e., projective,
affine, similarity, euclidean transformations) to modify the
spatial aspect ratio, as well as non-spatial transformations to
change the color, contrast, brightness, and sharpness. By en-
forcing consistency on the ensembled data transformations,
the model learns representations invariant to various trans-
formations in semi-supervised and supervised learning.

Adversarial perturbation augments the input data by
adding adversarial noise to it. This noise targets at altering
the model predictions, e.g., reducing predictive confidence
or changing the predicted correct label [79], [80]. Adversarial
noise is introduced for SSL to augment data and learn from
the unlabeled data with adversarial transformations [24],
[25], [74], [81]. Virtual Adversarial Training (VAT) [24], [25]
is the first representative SSL method that perturbs input
data adversarially. In VAT, a small adversarial perturbation
is added to each input and a consistency regularization term
(i.e., KL divergence) is imposed to encourage distributional
robustness of the model against the virtual adversarial direc-
tion. Notably, it has been discovered that semi-supervised
learning with adversarial perturbed unlabeled data does
not only improve model generalization, but it also enhances
robustness to adversarial attacks [81], [82].

MixUp is a simple and data-agnostic augmentation strat-
egy that augments the input data by performing linear
interpolations on two inputs and their corresponding la-
bels [75]. It is also introduced as an effective regularizer
for SSL [26], [27]. The Interpolation Consistency Training
(ICT) [27] interpolates two unlabeled samples and their
network outputs. MixMatch [26] further considers to mix
a labeled sample and unlabeled sample as the input, and
the groundtruth label (of labeled data) and the predicted
label (of unlabeled data) as the output targets. Both methods
impose consistency regularization to guide the learning of
a mapping between the interpolated input and interpolated
output for learning from the unlabeled data.

Automated augmentation learns advanced augmentation
strategies automatically from data to produce strong sam-
ples, alleviating the need for manual design of domain-
specific data augmentation [76], [77], [83], [84], [85]. It is
also recently introduced for SSL by enforcing the consis-
tency between the prediction of a weakly-augmented or
clean sample and the averaged prediction of its strongly
augmented versions derived from automated augmenta-
tion [28], [29]. Inspired by the recent advances of Au-
toAugment [76], ReMixMatch [28] introduces CTAugment
to learn an automated augmentation policy. Unsupervised
Data Augmentation (UDA) [29] adopts RandAugment [77]
to produce more diverse and strongly augmented samples
by uniformly sampling a set of standard transformations

based on the Python Image Library. Later on, FixMatch [30]
unifies multiple augmentation strategies including Cutout
[78], CTAugment [28], and RandAugment [77] to produce
even more strongly augmented samples as input.

2.2.1.2 Consistency regularization under model variations

To impose the predictive consistency under model vari-
ations (i.e., variations made in the model’s parameter space)
as in Eq. (3), stochastic perturbation [31], [32], [33] and
ensembling [22], [35], [86] are proposed to generate non-
identical models and produce different outputs for the same
input – a new model variant is denoted by θ̂ in Eq. (3).
A generic visual illustration of consistency regularization
under model variations is depicted in Fig. 3 (b). We review
two representative streams of works as follows.
Stochastic perturbation introduces slight modifications on
the model weights by adding Gaussian noise, dropout, or
adversarial noise in a class-agnostic manner [31], [32], [33],
[34]. For example, Ladder Network injects layer-wise Gaus-
sian noises into the network and minimizes a denoising
L2 loss between outputs from the original network and
the noisy-corrupted network [32]. Pseudo-Ensemble applies
dropout on the model’s parameters to obtain a collection
of models (a pseudo-ensemble), while minimizing the dis-
agreements (KL divergence) between the pseudo-ensemble
and the model [31]. Similarly, Virtual Adversarial Dropout
introduces adversarial dropout to selectively deactivates
network neurons and minimizes the discrepancy between
outputs from the original model and the perturbed model
[33]. A recent approach, Worst-Case Perturbations (WCP) in-
troduces both addictive perturbations and drop connections
on model parameters, where drop connections set certain
model weights to zero to further change the network struc-
ture [34]. Notably, these perturbation mechanisms promote
the model robustness against noises in network parameters
or structure to learn from unlabeled data (Fig. 3 (b)).
Ensembling is an another effective method to produce a set
of models covering different regions of the version space
[87], [88], [89]. As demonstrated by seminal machine learn-
ing models such as boosting [90] and random forest [89], a
set of different models can often provide more reliable pre-
dictions than a single model. Moreover, ensembling offers
richer inference uncertainty to mitigate the overconfidence
issue in deep neural networks [91]. Owing to these merits,
ensembling is also introduced in consistency regularization
for SSL, where an ensemble model is typically derived by
computing an exponential moving average (EMA) or equal
average in the prediction space or weight space [14], [22],
[35], [36]. Temporal Ensembling [22] and Mean Teacher [35]
are two representatives that first propose to ensemble all the
networks produced during training by maintaining an EMA
in the weight space [35] or prediction space [22]. Stochastic
Weight Averaging (SWA) [36] applies an equal average of
the model parameters in the weight space to provide a more
stable target for deriving the consistency cost. Later on,
Uncertainty-Aware Self-Distillation (UASD) [14] computes
an equal average of all the preceding model predictions
during training to derive soft targets as the regularizer.
Remarks. Consistency regularization can be treated as an
auxiliary task that learns from the unlabeled data by mini-
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Fig. 4: In self-training, (a) the model prediction is enforced
to have low entropy, (b) two models learn from each other
and (c) the student model learns from the teacher model.

mizing the model predictive variance towards the variations
in the input space or weight space, while the predictive vari-
ance is generally quantified as the discrepancy between two
predictive probability distributions or network outputs. By
minimizing the consistency regularization loss, the model is
encouraged to learn more powerful representations that are
invariant towards variations added on each sample, without
utilizing any additional label annotations.

2.2.2 Self-Training

Self-training is a class of algorithms that learn from the
unlabeled data by imputing the labels for samples predicted
with high confidence [58], [59], [92]. It is originally proposed
for conventional machine learning models such as logistic
regression [92], bipartite graph [58] and Naive Bayes clas-
sifier [59]. Recently, it is further re-visited in training deep
neural networks to learn from massive unlabeled data along
with limited labeled data. In the following, we review three
representative lines of works in self-training, including en-
tropy minimization, co-training and distillation. See Figure
4 for an illustration of self-training.
Entropy minimization is one of the self-training methods
that regularize the model learning based on the low density
separation assumption [72], [92], which considers that the
class decision boundary should be placed in the low density
regions. This is also in line with the cluster assumption
and manifold assumption [43], [70], which hypothesizes that
data points from the same class are likely to share the same
cluster or manifold. Formally, the entropy minimization
objective can be formulated as:

min
θ

∑
x∈D

(
−

∑
K
j=1p(yj |x; θ) log p(yj |x; θ)

)
, (4)

where K refers to the number of classes. p(yj |x; θ) is the
probability of assigning the sample x to the class yj . Eq. (4)
is a measure of class overlap. As a lower entropy indi-
cates a higher confidence in model prediction, minimizing
Eq. (4) enforces each unlabeled sample to be assigned to
the class predicted with the highest probability. Although
entropy minimization is originally proposed for logistic
regression to impute the labels for samples classified with
high confidence [92], it is later extended to train deep neural
networks in a semi-supervised fashion by minimizing the
entropy of the class assignments that are either derived in
the prediction space [25], [26], [28], [30], [37], [93] or the
feature space [38], as detailed next.

Entropy minimization can be imposed in the prediction
space. For instance, Pseudo-Label [37] directly assigns each
sample to the class label predicted with the maximum prob-
ability, which implicitly minimizes the entropy of model
predictions. When pseudo labels are one-hot, they could
easily cause error propagation due to the wrong label as-
signments. To alleviate this risk, MixMatch [26] uses an
ensemble of predictions over different input augmentations,
and softly sharpens the one-hot pseudo labels with a tem-
perature hyperparameter. Similarly, FixMatch [30] assigns
the one-hot labels only when the confidence scores of the
model predictions are higher than a certain threshold.

Entropy minimization can also be imposed in the feature
space, as it is also feasible to derive the class assignments
based on proximities to class-level prototypes (e.g., class
centers) in the feature space [38], [94]. In [38], a Memory
module is proposed to learn a feature center per class
and the class assignment is derived based on proximities
to all the feature centers. By entropy minimization, each
unlabeled sample is assigned to the nearest feature center.
Co-training learns two or multiple classifiers on more than
one view from different sources that describe the same
samples [7], [39], [40], [58], [59]. Conceptually, a co-training
framework [58], [59] trains two independent classifier mod-
els on two different but complementary data views and
imputes the predicted labels in a cross-model manner. It
is later extended for deep visual learning [39], [40], [95], as
represented by Deep Co-training (DCT) [39] and Tri-training
[40]. DCT [39] trains a network with two or more classifi-
cation layers, and passes different views (e.g., the original
view and the adversarial view [96]) to individual classifiers
for co-training, while an unsupervised loss is imposed to
minimize the similarity of predictions from different views.

The basic idea of co-training can be extended from dual-
view [39] to triple [40] or multi-view [39] – e.g., in Tri-
training [40], three classifiers are trained together, with
labels assigned to the unlabeled data when two of the
classifiers agree on the predictions and the confidence scores
are higher than a threshold. Formally, the existing deep co-
training objective can be written as Eq. (5).

min
θ

∑
x∈D

d(p1(y|x; θ1), z2) + d(p2(y|x; θ2), z1), (5)

where p1, p2 are predictions of two independent classifiers
θ1, θ2 trained on different data views. d(·, ·) introduces the
similarity metric to learn from the imputed targets z1, z2
from each other, e.g., cross-entropy on one-hot targets [40],
or Jensen-Shannon divergence between output targets [39].
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Distillation is originally proposed to transfer the knowl-
edge learned by a teacher model to a student model, where
the soft targets from the teacher model (e.g., an ensemble
of networks or a larger network) can serve as an effec-
tive regularizer or a model compression strategy to train
a student model [97], [98], [99]. Recent works in SSL use
distillation to transfer knowledge learned from the teacher
network to impute learning targets on the unlabeled data for
training the student network [14], [41], [42], [100]. Formally,
an unsupervised distillation objective is introduced on a
student model θs to learn from the unlabeled data as:

min
θ

∑
x∈D

d(ps(y|x; θs), zt), (6)

where the student prediction ps is enforced to align with
the targets zt produced by a teacher model θt on either
the unlabeled data or all the data. Compared to co-training
(Eq. (5)), distillation in SSL (Eq. (6)) does not optimize
multiple networks simultaneously, but instead trains more
than one network in different stages. In distillation, the ex-
isting works can be further grouped into model distillation
and data distillation, which generate learning targets for
unlabeled data using the teacher model output or multiple
forward passes of the same input data, as detailed next.

In model distillation, the standard teacher-student learn-
ing paradigm is typically adopted to assign labels from
a teacher model to a student model [14], [41], [100]. The
teacher model can be formed differently, e.g., a pre-trained
model or an ensemble of models. In Noisy Student Training
[41], an iterative self-training process is proposed to iter-
ate the teacher-student training by first training a teacher
to impute labels on unlabeled data for the student, and
reusing the student as the teacher in the next iteration. In
Uncertainty-Aware Self-Distillation (USAD) [14], the teacher
is formed by averaging all the preceding network predic-
tions to impute labels on unlabeled data for updating the
student network itself. In model distillation, both soft targets
and one-hot labels from the teacher model can serve as the
learning targets on the unlabeled data [14], [41].

In data distillation, the teacher model predicts learning
targets on unlabeled data by ensembling the outputs of
the same input under different data transformations [42].
Specifically, the ensembled teacher predictions (i.e., soft
targets) are derived by averaging the outputs of the same
inputs under multiple data transformations; while the stu-
dent model is then trained with the soft targets. Compared
to model distillation, data distillation transforms the input
data multiple times rather than training multiple networks
to impute the ensembled predictions on unlabeled data. This
is similar to consistency regularization with random data
augmentation; however, in data distillation, two training
stages are involved – the first stage involves pre-training the
teacher model; while the second stage involves training the
student network to mimic the teacher model by distillation.
Remarks. Similar to consistency regularization, self-training
can be considered as an unsupervised auxiliary task learned
along with the supervised learning task. In general, it
also enforces the predictive invariance towards instance-
wise variations or the teacher’s predictions. However, self-
training differs in design. While consistency regularization
generally trains one model, self-training may require more
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Fig. 5: Graph-based regularization (§2.2.3) for training a neu-
ral network with an augmented Nearest Neighbor graph.
Pseudo labels are propagated over the graph based on
neighbourhood consistency and an unsupervised regular-
ization term is imposed on the feature or prediction space.

than one model to be trained, e.g., co-training requires at
least two models co-trained in parallel while distillation
requires to train a teacher and a student model sequentially.

2.2.3 Graph-based Regularization

Graph-based regularization is a family of transductive learning
methods originally proposed for non-deep semi-supervised
learning algorithms [70], [73], [101], [102], [103], such as
transductive Support Vector Machine [70], [102] and Gaus-
sian random field model [101]. Most algorithms from this
family build a weighted graph to exploit the relationships
among the data samples. Specifically, both labeled and un-
labeled samples are represented as nodes, while the edge
weights encode the similarities between different samples.
The labels can be propagated over the graph based on the
smoothness assumption [70], i.e., neighboring data points
should share the same class label. See Figure 5 for an
illustration of graph-based regularization.

To learn from the unlabeled data, a graph-based regular-
ization term is generally imposed for model optimization,
which imposes various forms of smoothness constraints
to minimize the pairwise similarities between nearby data
points. Graph-based regularization is later reformulated
for semi-supervised learning with deep neural networks,
such as EmbedNN [43], Graph Convolutional Network
[45], [104], Teacher Graph [44], and Label Propagation [46].
Although this line of works share the same smoothness
assumption for model optimization, graph-based regular-
ization can be imposed differently in either the feature space
or prediction space, as detailed in the following.
Graph-based feature regularizer. To impose graph-based
regularization, one typical way is to build a learnable near-
est neighbor (NN) graph that augments the original DNN to
encode the affinity between data points in the feature space,
as represented by EmbedCNN [43] and Teacher Graph [44].
Each node in the graph is encoded by the visual feature
extracted from the intermediate network layer or the output
from the last layer; while an affinity matrix Wij is computed
to encode the pairwise similarities between all the nodes.
To exploit the unlabeled data, a graph-based regularization
term can be formed as a metric learning loss, such as the
margin-based contrastive loss for Siamese networks [105],
[106] which constrains feature learning by enforcing the
local smoothness as follows;

min
θ

∑
xi,xj∈D

{
∥h(xi)− h(xj)∥2, if Wij=1

max(0,m− ||h(xi)− h(xj)||)2, if Wij=0

(7)
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Fig. 6: In GAN-based deep generative models (§2.2.4), the
unlabeled data that is generated by an image generator is
assigned to an auxiliary class (i.e., K+1) by the discriminator,
while the labeled samples are assigned to the K classes. At
test time, the discriminator acts as the classifier.

ensuring that features h(xi), h(xj) of nearest neighbors (i.e.,
Wij=1) are close to each other, while pushing the features
of dissimilar pairs (i.e., Wij=0) away from each other with
a distance margin m.

Beyond augmenting a DNN with a graph, a more flexible
way is to use graph convolutions, i.e., Graph Convolutional
Networks (GCN) [45], which derive new feature represen-
tations for each node subject to the graph structure [104],
[107]. Specifically, a GCN takes the data and affinity matrix
as input, and learns to estimate the class labels of unlabeled
data under a supervised cross-entropy loss on labeled data.
Graph-based prediction regularizer. A graph-based regu-
larization can also be introduced in the prediction space
[46], [108], as in Label Propagation [46]. Driven by the same
rationale of building a learnable NN-graph as above, in label
propagation, an NN-graph is computed to encode the simi-
larity between data points and propagate the labels from the
labeled data to the unlabeled data based on transitivity. To
train the network, a cross-entropy loss is computed with
the graph propagated labels to learn from the unlabeled
data. While being similar to the approach Pseudo-Labels
[37], the propagated labels are derived with an external NN-
graph that encodes the global manifold structure. Further,
the label propagation on graph and the update of DNN are
performed alternatively to propagate more reliable labels.
Remarks. Graph-based regularization shares several simi-
larities with consistency regularization and self-training in
SSL. First, it introduces an unsupervised auxiliary task to
train a DNN with propagated learning targets (e.g., pseudo
labels) on the unlabeled data. Second, its learning objective
can be formulated as a cross-entropy loss or metric learning
loss. Notably, while consistency regularization and self-
training are inductive approaches that estimate a learning
target per instance, graph-based regularization methods
are transductive approaches that propagate learning targets
based on a graph constructed on the dataset. Beyond con-
crete details, however, these three techniques all share the
same fundamental idea of seeking for unsupervised targets.

2.2.4 Deep Generative Models
Deep generative models are a class of unsupervised learning
models that learn to approximate the data distributions
without labels [109], [110]. By integrating the generative
unsupervised learning concept into a supervised model, a
semi-supervised learning framework can be formulated to
unify the merits of supervised and unsupervised learning.
Two main streams of deep generative models are Varia-
tional Auto-Encoders (VAEs) and Generative Adversarial

Networks (GANs), as detailed below. See Figure 6 for an
illustration of a GAN framework for SSL.
Variational auto-encoders (VAEs) are probabilistic models
based on variational inference for unsupervised learning of
a complex data distribution [109], [111]. A standard VAE
model contains an encoder network that encodes an input
sample to a latent variable and a decoder network that
decodes the latent variable to reconstruct the input; while
a variational lower bound is maximized to train the model.
When applied to semi-supervised learning [47], [48], [112],
an unsupervised VAE model is generally combined with a
supervised classifier. For instance, to predict task-specific
class information required in SSL, Class-conditional VAE
[47] and ADGM [48] introduce the class label as an extra
latent variable in the latent feature space to explicitly dis-
entangle the class information (content) and the stochastic
information (style), and impose an explicit classification loss
on the labeled data along with the vanilla VAE loss.
Generative adversarial networks (GANs) [110] learn to
capture the data distribution by an adversarial minimax
game. Specifically, a generator is trained to generate as
realistic images as possible while a discriminator is trained
to discriminate between real and generated samples. When
re-formulated as a semi-supervised representation learner,
GANs can leverage the benefits of both unsupervised gener-
ative modeling and supervised discriminative learning [49],
[50], [51], [52], [53], [113], [114], [115], [116], [117], [118].

The generic idea is to augment the standard GAN
framework with supervised learning on the labeled real
samples (i.e., discriminative) and unsupervised learning on
the generated samples. Formally, this enhances the original
discriminator with an extra supervised learning capability.
For example, Categorical GAN (CatGAN) [49] introduces
a K-class discriminator, and minimizes a supervised cross-
entropy loss on the real labeled samples, while imposing
a uniform distribution constraint on the generated samples
by maximizing the prediction’s entropy. Similarly, feature
matching GAN (FM-GAN) [50], ALI [51], BadGAN [52] and
Localized GAN [53] formulate a (K+1)-class discriminator
for SSL, whereby a real labeled sample xl is considered as
one of the K classes and a generated sample xG as the
(K + 1)th class. The supervised and unsupervised learning
objective for the (K+1)-class discriminator can be written
as follows;

max
θ

∑
x∈D

log p(y|xl, y<K+1), (8)

max
θ

∑
x∈D

log (1−p(y=K+1|xl))− log p(y=K+1|xG), (9)

where Eq. (8) is the supervised classification loss on the
labeled samples xl; Eq. (9) is an unsupervised GAN loss that
discriminates between the real labeled samples xl and the
generated fake samples xG from the image generator. In ad-
dition to the GAN-based objectives for model optimization,
other objectives could be further introduced to constrain
the generated samples. For instance, Localized GAN [53]
introduces a regularizer on the generator to ensure the
generated samples lie in the neighborhood of an original
sample on the manifold, thus allowing to train a locally
consistent classifier based on the generated samples in a
semi-supervised fashion.
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Remarks. Unlike discriminative SSL techniques such as
consistency regularization, self-training, and graph-based
regularization, DGMs can naturally learn from unlabeled
data without the need to estimate their labels. In other
words, DGMs are native unsupervised representation learn-
ers. To enable SSL in DGMs, the key in model reformulation
is thus to integrate the label supervision into training, e.g.,
adding a class label latent variable in VAEs or an extra class
discriminator in GANs. Further, one also needs to tackle
more difficult model optimization in a GAN framework.

2.2.5 Self-Supervised Learning

Self-supervised learning is a class of unsupervised represen-
tation learners designed based on unsupervised surrogate
(pretext) tasks [11], [119], [120], [121], [122], [123]. It is worth
noting that self-supervision differs from the self-training
algorithms in §2.2.2, as self-supervised learning objectives
are task-agnostic and could be trained without any label
supervision. Self-supervision is originally proposed to learn
from only unlabeled data with task-agnostic unsupervised
learning objectives, but recently also be explored for SSL
[12], [54], [55]. In semi-supervised training, task-agnostic
self-supervision signals on all training data are often inte-
grated with a supervised learning objective on labeled data.
For instance, the earlier work S4L [54] uses self-supervision
for SSL based on multiple self-supervision signals such as
predicting rotation degree [123] and enforcing invariance
to exemplar transformation [119] to train the model along
with supervised learning. Later on, the follow-up works
SimCLR [12] and SimCLRv2 [55] introduce self-supervised
contrastive learning for task-agnostic unsupervised pre-
training, followed by supervised or semi-supervised fine-
tuning using label supervision in the downstream task.
Remarks. A unique advantage of self-supervision for SSL
is that task-specific label supervision is not required dur-
ing training. While the aforementioned semi-supervised
learners typically solve a supervised task and an auxiliary
unsupervised task jointly, self-supervised semi-supervised
learners can be trained in a fully task-agnostic fashion.
This suggests the great flexibility of self-supervision for
SSL. Thus, the self-supervised training can be introduced as
unsupervised pre-training or as an auxiliary unsupervised
task solved along with supervised learning. Although self-
supervision is relatively new for SSL, it has been more
widely explored for unsupervised learning, which is de-
tailed more extensively in §3.2.1 and §3.2.2.

3 UNSUPERVISED LEARNING (UL)
Unsupervised Learning (UL) aims to learn representations
from unlabeled data without utilizing any label supervi-
sion. The learned representation is not only expected to
capture the underlying semantic information, but also be
transferable to tackle unseen downstream tasks such as
visual recognition, detection, and segmentation [16], visual
retrieval [152], and object tracking [153].

UL is attractive in computer vision for multiple rea-
sons. First, due to the high cost of label annotations, large
labeled datasets may not unavailable in many application
scenarios, e.g., medical imaging [154]. Second, as there often
exists data/label distribution drifts (or gaps) across tasks

unsupervised loss 
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supervised loss model

Fig. 7: Unsupervised learning trains a generalizable model
using purely unlabeled data. The model can later be fine-
tuned with labeled data and tested on a downstream task.

and application scenarios, pre-training on a large labeled
dataset cannot always guarantee good model initialization
for unseen situations [155]. Third, UL could supply strong
pre-trained models that may perform on par with or even
outperform supervised pre-training [12], [16], [156].
Remarks. UL and SSL share the same aim to learn from
unlabeled data, and leverage similar modeling principles
to formulate unsupervised surrogate supervision signals
without any label annotation. However, instead of assuming
the availability of task-specific information (i.e., class labels)
as in SSL, UL considers model learning from purely task-
agnostic unlabeled data. Given that unlabeled data are
abundantly available in different scenarios (e.g., Internet),
UL offers an appealing strategy to provide good pre-trained
models that could facilitate various downstream tasks.

This section focuses on generic unsupervised visual
learners trained on image classification datasets, which is
organized as follows. We define the UL problem setup in
§3.1, and provide a taxonomy and analysis of the existing
representative unsupervised deep learning methods in §3.2.

3.1 The Problem Setting of UL

Problem Definition. In UL, we have access to an unlabeled
dataset Du = {xi}Nu

i=1. As label information is unknown, the
UL loss function L for training a DNN θ can generally be
expressed as Eq. (1), i.e., L = λlLsup+λuLunsup while λl = 0.
In discriminative models, the unsupervised objective Lunsup
requires certain pseudo/proxy targets to learn semantic and
generalizable representations. In generative models, Lunsup
is imposed to explicitly model the data distribution. See
Figure 7 for an illustration of UL.
Evaluation Protocol. To evaluate the performance of UL
methods, two evaluation protocols are often adopted, com-
monly known as the (1) linear classification protocol, and
(2) fine-tuning on downstream tasks. In (1), the pre-trained
DNN is frozen to extract the features for an image dataset,
while a linear classifier (e.g., a fully-connected layer or
a kNN classifier) is trained for classification using the
extracted features. In (2), the pre-trained DNN is used
to initialize a model for any downstream task, followed
by fine-tuning with a task-specific objective, such as fine-
tuning an object detector initialized from an unsupervised
pre-trained backbone (e.g., FasterR-CNN [157]) on object
detection datasets (e.g., PASCAL VOC [158]), or fine-tuning
a segmentation model (e.g., Mask R-CNN [159]) with a
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TABLE 2: A taxonomy of unsupervised deep learning methods, including three representative families in §3.2.1 – §3.2.3.

Families of Models Model Rationale Representative Strategies and Methods

Pretext tasks
Pixel-level reconstruction [124], [125], inpainting [126], denoising [127], colorization [128], [129], [130]
Instance-level predict image rotations [123], scaling and tiling [122], patch ordering [11], patch re-ordering [121]

Discriminative models
Instance discrimination

negative sampling
large batch size (SimLR [12]), memory bank (InstDis [131]), queue (MoCo [16])
hard negatives [132], adversarial negatives [133], cooperative positive [134]

input transformation data augmentation (PIRL [135]), multi-view augmentation (CMC [136])
negative-sample-free simple siamese (SimSiam [137]), Bootstrap (BYOL [138]), DirectPred [139]

Deep clustering
offline clustering DeepCluster [140], JULE [141], SeLa [142]
online clustering IIC [143], PICA [144], AssociativeCluster [145], SwAV [146]

Deep generative models
Discriminator-level DCGAN [147], Self-supervised GAN [148], Transformation GAN [149]
Generator-level BiGAN [150], BigBiGAN [151]

pre-trained backbone on segmentation datasets (e.g., COCO
[160]). The latter protocol is more critical evaluation.

3.2 Taxonomy on UL Algorithms

Existing unsupervised deep learning models can be mainly
grouped into three families: pretext tasks, discriminative
models and generative models (Figure B). The former two
families of UL algorithms are also known as self-supervised
learning, which drive model learning by a proxy proto-
col/task and construct pseudo label supervision to formu-
late unsupervised surrogate losses. The latter one is inher-
ently unsupervised and explicitly models the data distribu-
tion to learn representations without label supervision. We
review these three families of models, as summarized in
Table 2 and detailed in §3.2.1, §3.2.2 and §3.2.3.

3.2.1 Pretext Tasks

Pretext Tasks refer to hand-crafted proxy tasks manually
designed to predict certain task-agnostic properties of the
input data, which do not require any label supervision for
training. By formulating self-supervised learning objectives
with free labels, meaningful visual representations can be
learned in a fully unsupervised manner. In the following,
we review two classes of pretext tasks, which introduces
the self-supervision signals at the pixel-level or instance-
level. See Figure 8 and Figure 9 for the illustration of pixel-
level pretext tasks and instance-level pretext tasks, which
are detailed in the following.
Pixel-level pretext task is generally designed as a dense
prediction task that aims to predict the expected pixel values
of an output image as a self-supervision signal [124], [125],
[126], [127], [128], [129], [130], [161]. Auto-Encoder [124],
[125] is one of the most representative and primitive unsu-
pervised models that learn representations by reconstruct-
ing input images. In addition to standard reconstruction,
recent pixel-level pretext tasks introduce more advanced
image generation tasks to hallucinate the pixel colour values
of the corrupted input images, as represented by three stan-
dard low-level image processing tasks: (1) image inpainting
[126], [161] learns by inpainting the masked-out missing
regions in the input images; (2) denoising [127] learns to
denoise the partial destructed input; and (3) colorization
[128], [129], [130] aims to predict the colour values of the
grayscale images. These self-supervised models are trained
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Fig. 8: In pixel-level pretext tasks (§3.2.1), (a) inpainting, (b)
denoising, (c) colorization, the model aims to reconstruct the
original image (x̂) from a corrupted input image (x).

with an image generation task objective (e.g., a mean square
error) to enforce predicting the expected pixel values:

min
θ

∑
x∈D

||Gθ(x)− x̂||2, (10)

where Gθ(·) is an image generation network (typically
implemented as an encoder-decoder network architecture)
trained to predict the expected output image x̂ per pixel.
Once trained, part of the network Gθ(·) (e.g., encoder)
can be used to initialize the model weights or extract the
intermediate features for solving the downstream task.
Instance-level pretext tasks introduce sparse semantic la-
bels for each image sample by designing a surrogate proxy
task that can be solved per instance without any label
annotations [11], [121], [122], [123], [162], [163], [164], [165].
In general, these pretext tasks involve applying different
image transformations to generate diverse input variations,
whereby an artificial supervision signal is imposed to pre-
dict the applied transformation on each image instance.
Among this line of works, the representative ones con-
sider mainly two classes of instance-wise transformations
on input images. The first one is classifying global trans-
formations, such as rotations [123], scaling and tiling [122],
where the learning objective is to recognize the geometric
transformation applied on an image. The second one is
predicting local transformations, such as patch orderings
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Fig. 9: In instance-level pretext tasks (§3.2.1), (a) predict
rotation or input transformation, (b) predict patch ordering,
the aim is to predict the transformation on the input.

[11] and patch re-orderings [121], [162], [164], which cut
each image into multiple local patches. The goal of patch
orderings is to recognize the order of a given cut-out patch,
while patch re-orderings, also known as the jigsaw puzzles,
permute the cut-out patches randomly and the goal is to pre-
dict the permuted configurations. In summary, the objective
of an instance-level pretext task can be abstractly written as:

min
θ

∑
x∈D

Lunsup(Φz(x), z, θ), (11)

where Lunsup(·) can be various loss functions (e.g., cross-
entropy loss [123]) that learn a mapping from a transformed
input image Φz(x) to a discrete category or a configuration
of the applied transformation z. Once trained, the represen-
tations are covariant with the transformations Φz(·), thus
being aware of the spatial context information, e.g., how an
image is rotated or how the local patches are permuted.
Remarks. Although self-supervised learning objectives of
pixel-level or instance-level pretext tasks are generally not
explicitly related to the downstream task objectives (e.g.,
image classification, detection and segmentation), they per-
mit to learn from unlabeled data by predicting the spatial
context or structured correlation in images, such as inpaint-
ing missing regions, and predicting the applied rotations.
As these self-supervision signals can implicitly uncover the
semantic content (e.g. human interpretable concepts [166])
or spatial context in images, they often yield a meaningful
pre-trained model for initialization in unseen downstream
tasks, or even serve as a flexible and effective regularizer
to facilitate other machine learning setups, such as semi-
supervised learning [54] and domain generalization [167].

3.2.2 Discriminative Models

Discriminative models hereby refer to the class of unsu-
pervised discriminative models that learn visual represen-
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Fig. 10: Unsupervised discriminative model using con-
trastive learning (§3.2.2). The model is trained to pull to-
gether the positive pairs and push away the negative ones.

tations from the unlabeled data by enforcing invariance
towards various task-irrelevant visual variations at either
instance-level, neighbor-level or group-level. These visual
variations can be intra-instance variations such as different
views of the same instance [136], [168], [169], [170], [171], or
inter-instance variations between neighbor instances [172],
[173] or across a group of instances [140], [146], [174].

In the following, we review two representative classes of
unsupervised discriminative models that offer the state of
the art in unsupervised visual feature learning, including
instance discrimination and deep clustering. The former
imposes self-supervision per instance by treating each in-
stance as a class, while the latter introduces supervision
per group by considering a group of similar instances as
a class. See Figure 10 and Figure 11 for the illustration of
instance discrimination (based on contrastive learning) and
deep clustering, which are also detailed in the following.
Instance discrimination refers to the class of models that
learn discriminative representations by enforcing invariance
towards different viewing conditions, data augmentations
or various parts of the same image instance [12], [16], [55],
[119], [120], [131], [135], [136], [168], [169], [170], [171], [175],
[176], [177] – also known as exemplar learning [119], [120].

The most prevalent scheme in instance discrimination
is contrastive learning, which was initially proposed to
learn invariant representations by mapping similar inputs
to nearby points in the latent space [105], [106]. The re-
cent state-of-the-art contrastive learning models for self-
supervised learning are generally proposed to obtain an
invariance property by optimizing a contrastive loss formu-
lated upon the noise contrastive estimation (NCE) princi-
ple [178], which maximizes the mutual information across
different views. The multi-view information bottleneck
model [179] extends the original information bottleneck
principle to unsupervised learning and trains an encoder
to retain all the relevant information for predicting the label
while minimizing the excess information in the represen-
tation. Formally, contrastive learners such as SimLR [12]
and MoCo [16] are generally optimized by an instance-wise
contrastive loss (i.e., infoNCE loss) [106], [180]:

min
θ

∑
xi∈D

−log
exp(fθ(xi) · fθ(x+

i )/τ)∑M
j=1 exp(fθ(xi) · fθ(xj)/τ)

, (12)

where τ is a temperature, fθ is the feature encoder, i.e., a
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DNN; fθ(xi), fθ(x
+
i ) are the feature embeddings of two dif-

ferent augmentations, or views of the same image; {xj}Mj=1

includes (M−1) negative samples and 1 positive (i.e., x+
i )

sample. Eq. (12) optimizes the network by enforcing the
positive pairs (i.e., embeddings of the same instance) to lie
closer, while pushing apart the negative pairs (i.e., embed-
dings of different instances). Minimizing the InfoNCE loss
is equivalent to maximizing a lower bound on the mutual
information between fθ(xi) and fθ(x

+
i ) [168].

To derive a tractable yet meaningful contrastive distribu-
tion in Eq. (12), a large amount of negative pairs are often
required per training batch. To this aim, existing state-of-
the-art methods are typically featured with different negative
sampling strategies to collect more negative pairs. For in-
stance, a large batch size of 4096 is adopted in SimCLR [12].
In InstDis [131], MoCo [16], PIRL [135], and CMC [136], a
memory bank is used to maintain all the instance prototypes
by keeping moving average of their feature representations
over training iterations. Finally, running queue enqueues the
features of samples in the latest batches and dequeues the
old mini-batches of samples to store a fraction of sample’s
features from the preceding mini-batches [16], [135], [177].

Inspired by deep metric learning, various training strate-
gies are recently proposed to further boost contrastive learn-
ing. For instance, a hard negative sampling strategy [132] is
introduced to mine the negative pairs that are similar to
the samples but likely belong to different classes. Another
line of works further propose to train negative pairs and
(or) positive pairs by adversarial training [133], [134], which
learns a set of “adversarial negatives” that are confused
with the given samples, or trains the “cooperative positives”
that are similar to the given samples. These strategies are
designated to find the better negative and positive pairs for
improving contrastive learning.

In addition to negative sampling, it is essential to apply
various image transformations for generating multiple di-
verse variants (i.e., views) of the same instance to construct
the positive pairs. The most typical way is to apply common
data augmentation such as random cropping and color jit-
tering [12], [16], [131], [135], [169], [176], or pretext transfor-
mation [135] like patch re-ordering [121] and rotation [123].
An alternative way is to artificially construct multiple views
of a single image by using different image channels like
luminance and chrominance [136], or by extracting the local
and global patches of the same image [168]. In a nutshell,
although there are different strategies in negative sampling
and image transformations to construct the negative and
positive pairs for contrastive learning, these strategies share
the same aim to learn visual representations invariant to
diverse input transformations [135], [175].

While contrastive learning approaches rely on obtaining
a sufficient amount of negative pairs to derive the con-
trastive loss (Eq. (12)), another alternative non-contrastive
scheme for instance discrimintation operates in a negative-
sample-free manner [137], [138], [139], [181], as exemplified
by bootstrap (BYOL) [138] and simple siamese networks
(SimSiam) [137]). In particular, in BYOL and SimSiam, two
views (obtained from data augmentation) of the same im-
ages are passed towards the networks and the mean squared
error is minimized between the representations of two views
to enforce invariances. Importantly, a stop gradient scheme
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unsupervised loss 

Fig. 11: In unsupervised discriminative models using deep
clustering (§3.2.2), unlabeled samples are assigned to a set
of clusters by online or offline clustering, while the cluster
memberships are utilized as pseudo labels for training.

is adopted to prevent representational collapse, i.e. avoid
mapping all the samples to the same representations. An-
other related method is Barlow Twins [181], which computes
a cross-correlation matrix between the distorted versions of
a batch of training samples and enforce the matrix to be
an identity matrix, thus learning self-supervised representa-
tions invariant to different distortions. Although these non-
contrastive methods adopt other loss formulations, they
all share the similar spirit as contrastive learning given
that meaningful representations are learned by enforcing
invariances to different views of the same instance.
Deep clustering is another family of strong unsupervised
models that learn meaningful representations by grouping
similar instances from the same cluster together [140], [141],
[142], [144], [146], [173], [174], [182], [183], [184], [185], [186],
[187]. In training, the entire dataset is generally divided
into groups by associating each instance to a certain cluster
centroid based on pairwise similarities. Although clustering
algorithms are longstanding machine learning techniques
[188], [189], [190], they have been recently re-designed to
be seamlessly integrated with DNNs to learn discriminative
representations without label supervision. Conceptually, the
cluster memberships can be considered as some pseudo
labels to supervise the model training, as written in Eq. (13).

min
θ

∑
x∈D

Lunsup(x, ŷ, θ), (13)

where ŷ is the cluster membership of sample x, Lunsup(·, ·, θ)
is the loss function that constrains the mapping from x to y,
such as a classification loss. Deep clustering algorithms can
be further grouped into two categories according to whether
the assignments of cluster memberships are derived in an
offline or online manner, as detailed in the following.

In offline clustering, unsupervised training is alternated
between a cluster assignment step and a network training
step [141], [142], [173], [174], [182], [191], [192], [193]. While
the former step estimates the cluster memberships of all
the training samples, the latter uses the assigned cluster
memberships as pseudo labels to train the network. Rep-
resentative offline clustering models include DeepCluster
[140], JULE [141] and SeLa [142], which mainly differ in the
clustering algorithms. Specifically, DeepCluster [140], [174]
groups visual features using k-means clustering [189]. JULE
[141] uses agglomerative clustering [194] that merges sim-
ilar clusters to iteratively derive new cluster memberships.
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Fig. 12: In unsupervised deep generative model based on
GAN (§3.2.3), a generator and a discriminator are trained
with a minimax game (Eq. (14)) in an unsupervised manner,
whilst their intermediate features lead to discriminative
visual representations.

SeLa [142] casts clustering as an optimal transport problem
solved by Sinkhorn-Knopp algorithm [195] to obtain the
cluster memberships as pseudo labels.

In online clustering, the cluster assignment step and
network training step are coupled in an end-to-end training
framework, as represented by IIC [143], AssociativeCluster
[145], PICA [144], and SwAV [146]. Compared to offline
clustering, online clustering could better scale to large-
scale datasets, as it does not require clustering the entire
dataset iteratively. This is typically achieved in two ways:
(1) training a classifier that parameterizes the cluster mem-
berships (e.g., IIC and PICA); (2) learning a set of cluster
centroids/prototypes (e.g., AssociativeCluster and SwAV).
For instance, IIC [143] learns the cluster memberships by
maximizing the mutual information between predictions
of an original instance and a randomly perturbed instance
obtained from data augmentation. SwAV [146] learns a set
of prototypes (i.e., cluster centroids) in the feature space and
assigns each sample to the closest prototype.
Remarks. Recent advances of discriminative unsupervised
models include both contrastive learning and deep cluster-
ing, which have set the new state of the art. On one side,
contrastive learning discriminates individual instances by
imposing transformation invariance at the instance-level.
Interestingly, this opposes some instance-level pretext tasks
that instead learn by predicting the applied transformations.
Contrastive learning also closely relates to consistency reg-
ularization in SSL in the sense of enforcing invariance to
transformations, although different loss functions are often
used. However, as shown in [137], a pairwise loss objective
– often used for consistency regularization in SSL – can be
also effective as contrastive loss (Eq. (12)). This suggests that
the essential idea behind them is identical – imposing trans-
formation invariance at instance level. Deep clustering, on
the other hand, discriminates between groups of instances
for discovering the underlying semantic boundaries, and
enforces group-level invariance. The idea of consistency
regularization is also adopted by several deep clustering
methods [143], [144], conforming its more generic efficacy
beyond SSL. Lastly, discriminative unsupervised learning
can also be conducted at both instance-level and group-level
to learn more powerful representations [186], [196].

3.2.3 Deep Generative Models

Deep generative models (DGMs), as introduced in §2.2.4, are
inherent unsupervised learners that explicitly model the
data distribution [109], [110], [197], [198]. DGMs are appli-
cable for both semi-supervised and unsupervised learning,

as most represented by Generative Adversarial Networks
(GANs) [49], [148], [149], [151], [199]. A typical GAN con-
tains a discriminator D to differentiate real and fake sam-
ples, and a generator G that can serve as an image encoder
to capture the semantics in latent space, as trained by a
minimax game:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))],

(14)

where z is sampled from an input noise distribution pz(z).
GANs can learn representations at both the discriminator
and the generator level. See Figure 12 for an illustration of
deep generative model based on a GAN.

To learn representations at the discriminator-level, Deep
Convolutional Generative Adversarial Network (DCGAN)
[147] adopts a pre-trained convolutional discriminator to
extract features for tackling a downstream image classifi-
cation task. Later on, Self-supervised GAN [148] and Trans-
formation GAN [149] further imbue the discriminator with
a self-supervised pretext task to predict the applied image
transformation, thus enabling the representations to capture
the latent visual structures.

To learn representations at the generator-level, Bidi-
rectional Generative Adversarial Networks (BiGAN) [199]
introduces an image encoder coupled with the generator,
which is trained with a joint discriminator loss to tie the data
distribution and the latent feature distribution together. This
allows the image encoder to capture the semantic variations
in its latent representation, and offer discriminative visual
representations for one nearest neighbor (1NN) classifica-
tion. To further improve BiGAN, BigBiGAN [151] adopts
more powerful discriminator and generator architectures
than BigGAN [150], together with an additional unary dis-
criminator loss to constrain the data or latent distribution
independently, therefore enabling more expressive unsuper-
vised representation learning at the generator-level.
Remarks. Although most state-of-the-art UL methods are
self-supervised models that solve pretext tasks or perform
unsupervised discriminative learning (as reviewed in §3.2.1
and §3.2.2), deep generative models are still an important
class of unsupervised learners owing to their native unsu-
pervised nature to learn expressive data representations in
a probabilistic manner. Further, they do not require manual
design of a meaningful discriminative learning objective,
while offering a unique ability to generate abundant data.

4 DISCUSSION ON SSL AND UL
In this section, we reveal the connections between SSL and
UL with further analysis and discussion, including their
common learning assumptions (§4.1), and their applications
in different computer vision tasks (§4.2).

4.1 The learning assumptions shared by SSL and UL

As discussed in §2.1, the unsupervised learning objectives
in SSL are often formulated based on the smoothness as-
sumption [70]. Broadly speaking, the learning assumptions
of various discriminative SSL and UL algorithms can be
grouped into two types of smoothness assumptions, i.e.
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learning

(b) global smoothness

learning

(a) local smoothness

Fig. 13: The learning assumptions shared by SSL and UL:
(a) local smoothness, and (b) global smoothness. During
training, the grey dots (unlabeled samples) are assigned to
certain class labels based on the decision boundaries derived
from the local or global smoothness assumption.

local smoothness and global smoothness – as visually illus-
trated in Figure 13. In the following, we further elaborate
these assumptions and discuss the different SSL and UL
algorithms that are built upon these assumptions.

4.1.1 Local Smoothness
The local smoothness is often assumed in two ways to learn
from the unlabeled samples. First, a sample xi is assumed
to share the same class label as its transformed variant x̂i

(Eq. (15)). Second, a sample xi is assumed to belong to
the same class as its nearby sample xj in the latent rep-
resentation space (Eq. (16)). The following equations define
how an unsupervised loss term is imposed to enforce local
smoothness on an unlabeled sample xi:

min
θ

∑
xi∈D

Lunsup(f(xi), f(x̂i)) (15)

min
θ

∑
xi∈D

Lunsup(f(xi), f(xj)) (16)

where f(·) is the model to be trained and gives the model
output (such as features or predictions). Lunsup(·) could be
any similarity metric that quantifies the divergence or incon-
sistency between two model outputs, such as a mean square
error, or contrastive loss. In essence, multiple SSL and UL
algorithms are formulated based on the local smoothness to
learn from the unlabeled samples, as detailed below.

To impose the local smoothness among different trans-
formed views of the same samples (Eq. (15)), the consistency
regularization techniques in SSL (§2.2.1, Figure 3) enforce
the predictive smoothness of the same samples under dif-
ferent variations imposed at the input space and (or) model
space, given that the different transformed versions of the
same sample should lie in its own local neighborhood.
Similarly, the instance discrimination algorithms in UL also
implicitly enforce the same samples under different views or
transformations to have locally consistent representations,
as represented by contrastive learning which encourages
local invariances on each sample (§3.2.2, Figure 10).

To impose the local smoothness among the nearby sam-
ples (Eq. (16)), the graph-based regularization techniques

TABLE 3: A summarized taxonomy on the related SSL and
UL algorithms based on their learning assumptions.

Assumption Objective Corresponding SSL & UL algorithms

local smoothness
Eq. (15)

consistency regularization in SSL (§2.2.1)
instance discrimination in UL (§3.2.2)

Eq. (16)
graph-based regularization in SSL (§2.2.3)
neighbourhood consistency in UL (§3.2.2)

global smoothness Eq. (17)
self-training in SSL (§2.2.2)
deep clustering in UL (§3.2.2)

in SSL often propagate the class labels to the unlabeled
samples using the labels of their neighbours on the graph,
as the nearby samples should likely share the same class
(§2.2.3, Figure 5). Similarly, neighbourhood consistency is
also explored in UL [172], [173], which forms the semantic
training labels by mining the nearest neighbors of each sam-
ple based on feature similarity, given that nearest neighbors
are likely to belong to the same semantic class.

4.1.2 Global Smoothness
The global smoothness considers that a sample xi could be
assigned to a certain class (or target) zi based on the under-
lying global structures captured by the model (Eq. (17)).

min
θ

∑
xi∈D

Lunsup(f(xi), zi) (17)

where zi is the learning target (e.g. the cluster membership
or the most confident predicted class), which is derived
from the global class decision boundaries discovered during
training (Figure 13) whilst the decision boundaries are sup-
posed to lie in low density regions. Similar to Eq. (15) and
Eq. (16), Lunsup(·) is a similarity metric that quantifies the
inconsistency between the model output and the training
target, such as a cross-entropy loss. The global smoothness
assumption is also widely adopted in various SSL and UL
techniques to learn from the unlabeled samples with pseudo
learning targets, as detailed in the following.

The self-training techniques in SSL (§2.2.2, Figure 4) are
generally formulated based on global smoothness, as the
learning targets for unlabeled data are derived based on
the class decision boundaries discovered by the models. For
instance, in entropy minimization (Eq. (4), Figure 4 (a)), the
pseudo label is obtained as the class predicted with the high-
est confidence. In co-training and distillation (Eq. (5), Eq. (6),
Figure 4 (b)(c)), the learning targets come from the model co-
trained in parallel or pre-trained beforehand. Similarly, the
deep clustering algorithms in UL (§3.2.2, Figure 11) are also
proposed upon global smoothness, given that the cluster
memberships for unlabeled samples are acquired from an
online or offline clustering algorithm which uncovers the
latent class decision boundaries in the feature space.

4.1.3 Connections between SSL and UL

The shared learning rationales. As analyzed in §4.1.1 and
§4.1.2, most SSL and UL algorithms are formulated based
on the same local smoothness or global smoothness as-
sumption – as summarized in Table 3. A common aspect
of these SSL and UL algorithms is to design visual learning
objectives that enforce invariance or equivariance towards
different transformations applied on the input data, as
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represented by consistency regularization in SSL (§2.2.1)
and instance discrimination (such as contrastive learning)
in UL (§3.2.2). Typical transformation strategies can range
from simple data augmentation [21], [22], [35], to more com-
plex transformations such as adversarial perturbations [24],
[25], [74], [81], rotations [123] and patch reordering [121],
autoencoding transformations [200], [201] and automated
augmentation [28], [29], [30]. On one side, most of these
SSL and UL methods hinge on learning representations
that are invariant to different transformations including
data augmentation and perturbations by assigning the same
underlying labels to the augmented and perturbed data
samples. On the other side, other SSL and UL methods
consider learning representations that are equivalent to
different transformations such as rotations and patch re-
ordering by learning to predict the types of transformations.

In summary, many state-of-the-art SSL and UL methods
can be well related with the same underlying learning
assumptions, given that they introduce quite similar objec-
tives to learn from the unlabeled samples. In essence, the
learning rationales of these SSL and UL methods could be
broadly categorized as three types: (1) impose the consis-
tency among different transformed versions of the same
samples (Eq. (15)), (2) enforce the smoothness between a
sample and its neighbouring sample (Eq. (16)), and (3)
derive the learning targets for the unlabeled samples based
on the global decision boundaries (Eq. (17)).
The similarities and differences in problem setups. In
the problems setups, SSL and UL are similar in the sense
that both labeled and unlabeled data are often involved in
their training protocols before evaluating their generalized
model performance on the test set. In particular, the SSL
paradigm adopts one-stage training and uses both labeled
and unlabeled data during training (Figure 2); while most
existing UL protocols consider two-stage training (Figure 7)
– one stage for pre-training with unlabeled data and another
stage for fine-tuning with labeled data on a downstream task.

We summarize the training protocols used for SSL and
UL in Table A in the supplementary. In brief, UL differs
from SSL in several ways: (1) the labeled data and unlabeled
data are not given together at once; (2) unlabeled set may
have a different distribution from the labeled one. All these
properties make UL a more generic learning paradigm to
leverage different unlabeled datasets. Nevertheless, how
unsupervised pre-training upon different forms of unla-
beled data benefits the model generalization on specific
downstream tasks remains an open research question. For
instance, it remains unclear how an unsupervised model
pre-trained on natural colour images could generalize to
a downstream task that has a different data distribution
such as grayscale images in medical imaging. In this regard,
SSL provides a more reliable learning paradigm to utilize
the unlabeled data, given that the label set offers the prior
knowledge for the models and (or) the model designers to
select the useful set of unlabeled samples that are similar to
the labeled data distribution.

4.2 Applied SSL and UL in Visual Recognition
In §2 and §3, we mainly present the SSL and UL algorithms
for standard image classification. However, their underlying

learning rationales could be generalized to tackle other chal-
lenging computer vision tasks, e.g., semantic segmentation
[65], [202], object detection [63], [203], unsupervised domain
adaptation [204], [205], pose estimation [67], [206], 3D scene
understanding [207], video recognition [152], [208], etc. In
the following, we review three core visual recognition tasks
that widely benefit from SSL and UL methods to exploit
unlabeled data, including semantic segmentation (§4.2.1),
object detection (§4.2.2), and unsupervised domain adapta-
tion (§4.2.3). We also give a taxonomic overview of different
methods for different tasks in Table B in the supplementary.

4.2.1 Semantic Segmentation
Semantic segmentation aims to assign a semantic class label
for each pixel an input image. It is a core computer vision
task that could benefit various real-world applications such
as medical image analysis [209], [210], [211], [212] and
autonomous driving [213], [214], [215]. Supervised semantic
segmentation requires tedious and expensive pixel-wise la-
bel annotations, e.g. manually annotating one single natural
image in Cityscapes needs 1.5 hour [213].

To reduce the annotation costs in semantic segmentation,
a group of recent works consider only a small set of the
training data is annotated with per-pixel semantic labels
while the rest of the training data is unlabeled – known
as semi-supervised semantic segmentation. These works
generally inherit similar learning rationales as SSL or UL
for image classification, and adapt techniques such as con-
sistency regularization [216], [217], [218], [219], self-training
[202], [210], [220], [221], [222], [223], [224], GAN frameworks
[225], [226], [227] in SSL, or contrastive learning [228], [229],
[230], [231] in UL to learn from unlabeled images. Neverthe-
less, unsupervised loss terms in semantic segmentation are
often required to impose in a per-pixel manner to align with
the pixel-wise learning objective in semantic segmentation.
In the following, we discuss the three most representative
lines of state-of-the-art methods driven by recent advances
in SSL and UL for semi-supervised semantic segmentation.

Consistency regularization (§2.2.1) can be generalized for
pixel-wise tasks by formulating the consistency loss (Eq. (2),
Eq. (3)) at the pixel level. Rooted in similar spirit as standard
consistency regularization in SSL, recent works in semi-
supervised semantic segmentation [216], [217], [218], [219]
resort to enforcing pixel consistency among the images
before and after perturbations, whilst perturbations can be
introduced at the input space [216] or feature space [217].
For instance, the first consistency regularization method
for semantic segmentation [216] applies CutOut [78] and
CutMix [232] augmentation techniques to perturb the input
images with partial corruption, and imposes pixel-level
loss terms to ensure the uncorrupted regions in perturbed
images should have consistent pixel-wise predictions as the
same regions in original images. A recent cross-consistency
training [217] instead applies feature perturbations by in-
jecting noise into network’s activations and enforces pixel
consistency between the clean and perturbed outputs.

Self-training algorithms (§2.2.2) are adapted and shown
effective for semi-supervised semantic segmentation [202],
[210], [220], [221], [222], [223], [224], where pseudo segmen-
tation maps on unlabeled images are propagated using a
pre-trained teacher model [223], or a co-trained model [202].
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For example, a recent self-training method [223] propagates
pseudo segmentation labels with two steps – (1) assigning
pixel-wise pseudo labels on unlabeled data with a pre-
trained teacher model; and (2) re-training a student model
with the re-labeled dataset – until no more performance gain
is achieved. Another self-training approach [202] adopts a
co-training scheme by training two models to learn the per-
pixel segmentation predictions from each others.

Contrastive learning is widely used in UL (§3.2.2) and
recently adapted to learn from unlabeled data in semantic
segmentation [228], [229], [230], [231]. To formulate the con-
trastive loss (Eq. (12)) per pixel, one needs select meaningful
positive and negative pairs with consideration of pixel spa-
tial locations. For this aim, a directional context-aware con-
trastive loss [228] is proposed to crop two patches from one
image, and take features at the same location as a positive
pair and the rest as negative pairs. Another pixel contrastive
loss [230] is introduced to align the features before and after
a random color augmentation by taking features at the same
location as a positive pair, while sampling a fix amount of
negative pairs from different images.

4.2.2 Object Detection
Object detection aims to predict a set of bounding boxes and
the corresponding class labels for the objects of interest in an
image. An object detector needs to unify classification and
localization into one model by jointly training a classifier
to predict class labels and a regression head to generate
the bounding boxes [5], [233]. It is an important computer
vision task that widely impacts different applications such
as person search [234], vehicle detection [235], logo detection
[236], text detection [237], etc. Supervised object detection
requires costly annotation efforts – annotating the bounding
box of a single object could take up to 42 seconds [238].

To exploit the unlabeled data without bounding box or
class label information, a group of recent works in object de-
tection exploit unlabeled data to boost model generalization
by training on a small set of labeled data and a set of com-
pletely unlabeled images – known as semi-supervised ob-
ject detection. These works mainly reformulate two streams
of SSL techniques, including consistency regularization [63],
[203], [239], [240], [241], [242] and self-training [42], [243],
[244], [245], [246], both of which introduce the learning
targets for both bounding boxes and class labels to learn
from the completely unlabeled data, as detailed next.

Consistency regularization (§2.2.1) is introduced for semi-
supervised object detection to propagate the soft label and
bounding boxes assignment on unlabeled images based on
dual consistency constraints on classification and regression
[63], [203], [239], [240], [241], [242]. One line of works
apply data augmentation such as random flipping [203]
and MixUp [75] to generate augmented views of unlabeled
images and encourage the predicted bounding boxes and
its class labels remain consistent for the different views.
Compared to standard consistency regularization, these
methods especially need re-estimating the bounding box
location in an augmented image, such as flip the bounding
box [203], or calculate the overlapped bounding boxes of
two mixed images in MixUp [75]. Another line of works
follow a teacher-student training framework and impose
teacher-student consistency [63], [240], [241], [242] similar to

Mean Teacher [35]. The teacher model is derived either from
the student model via exponential mean average (EMA)
[63], [240], [242], or by applying non-maximum suppression
(NMS, a filtering technique for refining the detected bound-
ing boxes) on the instant model outputs [241] to obtain the
pseudo bounding boxes and label annotations for training.

Self-training algorithms (§2.2.2) are also introduced to
annotated unlabeled images for object detection [42], [243],
[244], [245], [246]. A simple self-training paradigm is to
annotate the unlabeled images with bounding boxes and
their class labels using a pre-trained teacher model and
use these data for re-training [243]. However, such pseudo
annotations may be rather noisy. To improve the quality of
pseudo labels, recent works propose interactive self-training
to progressively refine the pseudo labels with NMS [244], or
quantify model uncertainty to select or derive more reliable
pseudo labels [245], [246] to learn from unlabeled data.

4.2.3 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) can be deemed
as a special case of SSL where the labeled (source) and
unlabeled (target) data lie in different distributions, a.k.a.
different domains. UDA is essential for visual recognition
[247], as the statistical properties of visual data are sensitive
to a wider variety of factors, e.g., illumination, viewpoint,
resolution, occlusion, times of the day, and weather condi-
tions. While most UDA methods focus on tackling the do-
main gap between the labeled and unlabeled data, SSL and
UL algorithms can also be adapted to learn from unlabeled
data in UDA, as detailed in the following.

Consistency regularization (§2.2.1) is shown effective in
UDA. Rooted in the same spirit of encouraging consistent
outputs under perturbations, various UDA approaches ap-
ply input transformations or model ensembling to simulate
variations in input or model space [35], [248], [249], [250].
To generate input variations, a dual MixUp regularization
integrates category-level MixUp and domain-level MixUp
to regularize the model with consistency constraints, thus
learning from unlabeled data to enhance domain-invariance
[248]. To generate model variations, self-ensembling [249]
utilizes the Mean Teacher [35] to impute training targets on
the unlabeled training data in target domain.

Self-training (§2.2.2) has been also useful for UDA. Sim-
ilar to SSL, self-training for UDA include three streams of
techniques to impute pseudo labels on the unlabeled target
samples, including entropy minimization, pseudo-label and
co-training. To ensure the effectiveness, self-training meth-
ods are often coupled with domain distribution alignment
for reducing the domain shift. For instance, entropy mini-
mization (Eq. (4)) is adopted for UDA [251], [252], [253], in
combination with distribution alignment techniques such as
domain-specific batch normalization layers [251], aligning
second-order statistics of features [252], or adversarial train-
ing and gradient synchronization [253]. Co-training (Eq. (5))
is also introduced for UDA, which imputes training targets
from multiple co-trained classifiers to learn from unlabeled
data and match cross-domain distributions [254].

Deep generative models (DGMs), as a class of models for
SSL and UL (§2.2.4, §3.2.3), are widely adopted for UDA.
In contrast to other UDA methods that reduce the domain
shift at the feature level, DGMs provide an alternative and
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complementary solution to mitigate the domain discrepancy
at pixel level by cross-domain image-to-image translation.
The majority of these frameworks are based on GANs, such
as PixelDA [255], generate to adapt [256], and GANs with
cycle-consistency like CyCADA [257], SBADA-GAN [258],
I2I Adapt [259] and CrDoCo [260]. These models typically
learn a real-to-real [257], [258], [260], [261] or synthetic-to-
real [255], [256], [262] mapping to render the image style
from the labeled source to the unlabeled target domain, thus
offering synthetic training data with pseudo labels.

Self-supervised learning, which has been popularized in
SSL and UL (§2.2.5, §3.2.1), is also introduced in UDA to
construct auxiliary self-supervised learning objectives on
unlabeled data. Self-supervised models often address the
UDA problem by self-supervision coupled with a super-
vised objective on the labeled source data [167], [204], [263],
[264], [265]. The pioneer work in this direction is JiGen
[167], which learns jointly to classify objects and solve the
jigsaw puzzles [121] pretext task to achieve better gener-
alization in new domains. Recent works [204], [263], [264]
explored other self-supervised pretext tasks such as pre-
dicting rotation [204], [263], [264], flipping [204] and patch
ordering [204]. Besides pretext tasks, recent UDA methods
also explored discriminative self-supervision signals based
on clustering or contrastive learning. For instance, Domain
Adaptative Neighborhood Clustering via Entropy optimiza-
tion (DANCE) [205] performs neighborhood clustering by
assigning the target samples to a “known” class prototype
in the source domain or its neighbor in the target domain.
Gradient regularized contrastive learning [266] leverages
the contrastive loss to push the unlabeled target samples
towards the most similar labeled source samples. Similarly,
a recent cross-domain contrastive learning [265] approach
aligns the target domain features to the class prototype
features in the source domain through contrastive loss,
thus minimizing the distances between the cross-domain
samples that likely belong to the same class.

5 EMERGING TRENDS AND OPEN CHALLENGES

In this section, we discuss the emerging trends in semi-
supervised and unsupervised learning from unlabeled data,
covering three directions, namely open-set learning (§5.1),
incremental learning (§5.2) and multi-modal learning (§5.3).
We detail both recent developments and open challenges.

5.1 Open-Set Learning from Unlabeled Data

In §2, we review works addressing the relatively simple
closed-set learning in SSL, which assume that unlabeled
data share the same label space as the labeled one. However,
this closed-set assumption may greatly hinder the effective-
ness of SSL in leveraging real-world uncurated unlabeled
data that contains unseen classes, i.e., out-of-distribution
(OOD) samples (also known as outliers) [69]. When ap-
plying most existing SSL methods to open-set learning
with noisy unlabeled data, their model performance may
degrade significantly, as the OOD samples could induce
catastrophic error propagation.

A recent line of works propose to address a more
complex open-set SSL scenario [14], [15], [267], [268], [269],

[270], [271], [272], where the unlabeled set contains task-
irrelevant OOD data. In this setup (so-called open-world
SSL), unlabeled samples are not all beneficial. To prevent
possible performance hazards caused by unlabeled OOD
samples, recent advances in SSL propose various sample-
specific selection strategies to discount their importance or
usage [14], [15], [267], [268]. The pioneer works including
UASD [14] and DS3L [15] propose to impose a dynamic
weighting function to down-weight the unsupervised regu-
larization loss term proportional to the likelihood that an
unlabeled sample belongs to an unseen class. Follow-up
works resort to curriculum learning [267] and iterative self-
training [268] by training an OOD classifier to detect and
discard the potentially detrimental samples. More recently,
OpenMatch [270] propose to train a set of one-vs-all clas-
sifiers for detecting inliers and outliers and regularize the
model with a consistency constraint on the unlabeled inliers.
Open Challenges. The open-set setup in SSL calls for
integrating OOD detection [273] or novel class discovery
[274] with semi-supervised learning in a unified model
to advance selective exploitation of noisy unlabeled data.
Moreover, a more recent work propose a universal SSL
benchmark [271] which further extends the distribution
mismatch problem in open-set setup as subset or intersec-
tional class mismatch, and feature distribution mismatch.
These more realistic setups pose multiple new challenges,
including confidence calibration of DNN for OOD detection
[273], [273], [275], [276], [277], imbalanced class distribution
caused by real-world long-tailed distributed unlabeled data
[278], [279], and discovery of unseen classes in unlabeled
data [274], [280], [281]. Although recent advances in open-
set SSL have explored OOD detection, the other challenges
remain to be resolved to exploit real-world unlabeled data.

5.2 Incremental Learning from Unlabeled Data
Existing works on SSL and UL often assume all unlabeled
training data is available at once, which however may not
always hold in practice due to privacy concerns or compu-
tational constraints. In many realistic scenarios, we need to
perform incremental learning (IL) with new data to update
the model incrementally without access to past training
data. Here we review recent research directions on IL from
unlabeled data [282], [283] and discuss its open challenges.

Incremental learning (IL) from unlabeled data has been
investigated in a semi-supervised fashion [282]. IL (also
known as continual learning and lifelong learning [284])
aims to extend an existing model’s knowledge without
accessing the previous training data. Most existing IL ap-
proaches use regularization objectives to not forget old
knowledge, i.e., reducing catastrophic forgetting [285], [286],
[287], [288]. To this aim, unlabeled data is often used in IL
to prevent catastrophic forgetting by estimating the impor-
tance weights of model parameters for old tasks [289], or
formulating a knowledge distillation objective [282], [290] to
consolidate the knowledge learned from old data. Recently,
multiple works explore IL from unlabeled data that comes
as a non-stationary stream [283], [291], with the class label
space possibly varying over time [292]. In this setting, the
goal is to learn a salient representation from continuous
incoming unlabeled data stream. To expand the representa-
tions for novel classes and unlabeled data, several strategies
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are adopted to dynamically update representations in the
latent space, such as creating new cluster centroids by online
clustering [292] and updating mixture-of-Gaussians [283].
Some recent works apply self-supervised techniques on the
unlabeled test-data [293], [294], [295], which is useful to
overcome possible shifts in the data distribution [296].
Open Challenges. Incremental learning from unlabeled
data requires solving multiple challenges, ranging from
catastrophic forgetting [282], [297], modeling new concepts
[283], [292] to predicting the evolution of data streams [296].
Due to lacking the access to all the unlabeled training data
at once, addressing these challenges is nontrivial as directly
applying many existing SSL and UL methods could not
guarantee good generalization performance. As an example,
pseudo labels may suffer the confirmation bias problem
[298] when classifying unseen unlabeled data. Thus, in-
cremental learning from a stream of potentially non-i.i.d.
unlabeled data remains an open challenge.

5.3 Multi-Modal Learning from Unlabeled Data

A growing amount of recent works bring non-visual modal-
ities (e.g., text, audio) and visual modality to form mean-
ingful self-supervision signals that enable learning from
multi-modal unlabeled data. To bring vision and language
for unsupervised learning, variants of vision and language
BERT models (e.g., ViLBERT [299], LXMERT [300], VL-BERT
[301], Uniter [302] and Unicoder-VL [303]) are built upon
the transformer blocks [304] to jointly model images and
natural language in an unsupervised way. Specifically, the
visual, linguistic or their joint representations can be learned
in an unsupervised manner by solving the Cloze task in
natural language processing which predicts the masked
words in the input sentences [305], or by optimizing a
linguistic-visual alignment objective [300], [306]. Another
line of works utilize the language supervision (e.g., from
web data [307] or narrated materials [308], [309], [310], [311],
[312], [313]) to guide unsupervised representation learning
by aligning images and languages in the shared latent space,
as exemplified by CLIP [312] and ALIGN [313].

Similarly, to bring audio and visual modalities for unsu-
pervised learning, existing works exploit the natural audio-
visual correspondence in videos to formulate various self-
supervised signals, which predict the cross-modal corre-
spondence [314], [315], align the temporally corresponding
representations [309], [316], [317], [318], or cluster their
representations in a shared audio-visual latent space [208],
[319]. Several recent advances further explore audio, vi-
sion and language together for unsupervised representation
learning by aligning different modalities in a shared multi-
modal latent space [310], [320] or in a hierarchical latent
space for audio-vision and vision-language [308].
Open Challenges. The success of multi-modal learning
from unlabeled data often relies on an assumption that dif-
ferent modalities are semantically correlated. For instance,
when clustering audio and video data for unsupervised
representation learning [208], or transferring text knowledge
to the unlabeled image data [321], the two data modalities
are assumed to share similar semantics. However, this as-
sumption may not hold in real-world data, leading to de-
graded model performance [309], [322]. Thus, it remains an

unsolved challenge to learn from the multi-modal unlabeled
data that contains a semantic gap across modalities.

6 CONCLUSION

Learning visual representations with limited or no manual
supervision is critical for scalable computer vision appli-
cations. Semi-supervised learning (SSL) and unsupervised
learning (UL) models provide feasible and promising solu-
tions to learn from unlabeled visual data. In this comprehen-
sive survey, we have introduced unified problem definitions
and taxonomies to summarize and correlate a wide variety
of recent advanced and popularized SSL and UL deep learn-
ing methodologies for building superior visual classification
models. We believe that our concise taxonomies of existing
algorithms and extensive discussions of emerging trends
help to better understand the status quo of research in
visual representation learning with unlabeled data, as well
as to inspire new learning solutions for major unresolved
challenges involved in the limited-label regime.
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SUPPLEMENTARY MATERIALS

TABLE A: The problem setups of SSL and UL. DL,DU

denote labeled and unlabeled data. “–”: no training data.

Problem Setups Training Stage I Training Stage II

Semi-supervised learning (SSL) DL ∪ DU –
Unsupervised learning (UL) DU DL

Random augmentation

Adversarial perturbation

MixUp

Automated augmentation 

Stochastic perturbation 

Ensembling
model
variations

input
variations

Self-training

Entropy minimization

Co-training

Distillation

Graph-based regularization
Graph-based feature regularizer

Graph-based prediction regularizer

Deep generative models
Variational auto-encoders

Generative adversarial networks

Semi-Supervised
Learning

Self-supervised learning

Consistency regularization

Fig. A: A summary taxonomy of semi-supervised learning.

Pretext tasks
Self-supervised learning

Pixel-level pretext tasks

Instance-level pretext tasks

Discriminative models

Deep generative models
Discriminator-level

Generator-level

Unsupervised
Learning

Non-Contrastive

Deep clustering

Contrastive learning

Fig. B: A summary taxonomy of unsupervised learning.

TABLE B: An overview of the SSL and UL algorithms used
in three popular visual recognition tasks.

SSL & UL methods applied tasks

consistency regularization (SSL, §2.2.1)
self-training (SSL, §2.2.2)

semantic segmentation
object detection
domain adaptation

discriminative models (UL, §3.2.2)
semantic segmentation
domain adaptation

pretext tasks (UL, §3.2.1)
domain adaptation

deep generative models (SSL/UL, §2.2.4, §3.2.3)
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