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Abstract

Deep learning methods have started to dominate the research progress of video-based
person re-identification (re-id). However, existing methods mostly consider supervised
learning, which requires exhaustive manual efforts for labelling cross-view pairwise data.
Therefore, they severely lack scalability and practicality in real-world video surveillance
applications. In this work, to address the video person re-id task, we formulate a novel
Deep Association Learning (DAL) scheme, the first end-to-end deep learning method
using none of the identity labels in model initialisation and training. DAL learns a deep
re-id matching model by jointly optimising two margin-based association losses in an
end-to-end manner, which effectively constrains the association of each frame to the best-
matched intra-camera representation and cross-camera representation. Existing standard
CNNs can be readily employed within our DAL scheme. Experiment results demonstrate
that our proposed DAL significantly outperforms current state-of-the-art unsupervised
video person re-id methods on three benchmarks: PRID 2011, iLIDS-VID and MARS.

1 Introduction

Person re-identification (re-id) aims to match persons across disjoint camera views dis-
tributed at different locations [13]. While most recent re-id methods rely on static images
[2,6,21,22,23,32,34, 35, 39,47, 48, 52], video-based re-id has gained increasing attention
[16, 28, 37, 38, 40, 41, 44, 45, 45, 50, 51] due to the rich space-time information inherently
carried in the video tracklets. A video tracklet is a sequence of images that captures rich
variations of the same person in terms of occlusion, background clutter, viewpoint, human
poses, etc, which can naturally be used as informative data sources for person re-id. The
majority of current techniques in video person re-id consider the supervised learning con-
text, which imposes a strong assumption on the availability of identity (ID) labels for every
camera pair therefore allowing more powerful and discriminative re-id models to be learned
when given relatively small-sized training data. However, supervised learning methods are
weak in scaling to real-world deployment beyond the labelled training data domains. In prac-
tice, exhaustive manual annotation at every camera pair is not only prohibitively expensive
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Figure 1: Two types of consistency in our Deep Association Learning scheme. (a) Local
space-time consistency: Most images from the same tracklet generally depict the same per-
son. (b) Global cyclic ranking consistency: Two tracklets from different cameras are highly
associated if they are mutually the nearest neighbour returned by a cross-view ranking.

for a large identity population across a large camera network, but it is also implausible due
to insufficient designated persons reappearing in every camera pair. In this regard, unsuper-
vised video re-id is a more realistic task that is worth studying to improve the scalability of
re-id models in practical use.

Unsupervised learning methods [18, 25, 26, 27, 36, 42] are particularly essential when
the re-id task needs to be performed on a large amount of unlabelled video surveillance data
cumulated continuously over time, whilst the pairwise ID labels cannot be easily acquired
for supervised model learning. Due to the inherent nature of unsupervised learning, exist-
ing methods suffer from significant performance degradations when compared to supervised
learning methods in video person re-id. For instance, the state-of-the-art rank-1 re-id match-
ing rate on MARS [45] is only 36.8% by unsupervised learning [42], as compared to 82.3%
by supervised learning [20]. In fact, even the latest video-based unsupervised learning mod-
els [26, 42] for person re-id still lack a principled mechanism to explore the more powerful
representation-learning capabilities of deep Convolutional Neural Networks (CNNs) [3] for
jointly learning an expressive embedding representation and a discriminative re-id matching
model in an end-to-end manner. It is indeed not straightforward to formulate a deep learning
scheme for unsupervised video-based person re-id due to: (1) The general supervised learn-
ing nature of deep CNN networks: most deep learning objectives are formulated on labelled
training data; (2) The cross-camera variations of the same-ID tracklet pairs from disjoint
camera views and the likelihood of different people being visually similar in public space,
which collectively render the nearest-neighbour distance measure unreliable to capture the
cross-view person identity matching for guiding the model learning.

In this work, we aim to tackle the task of unsupervised video person re-id by an end-to-
end optimised deep learning scheme without utilising any ID labels. Towards this aim, we
formulate a novel unsupervised Deep Association Learning (DAL) scheme designed specif-
ically to explore two types of consistency, including (1) local space-time consistency within
each tracklet from the same camera view, and (2) global cyclic ranking consistency between
tracklets across disjoint camera views (Figure 1). In particular, we define two margin-based
association losses, with one derived from the intra-camera tracklet representation updated
incrementally on account of the local space-time consistency, and the other derived from the
cross-camera representation learned continuously based on the global cyclic ranking consis-
tency. Importantly, this scheme enables the deep model to start with learning from the lo-
cal consistency, whilst incrementally self-discovering more cross-camera highly associated
tracklets subject to the global consistency for progressively enhancing discriminative feature
learning. Overall, our DAL scheme imposes batch-wise self-supervised learning cycles to
eliminate the need for manual labelled supervision in the course of model training.
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Our contribution is three-fold: (I) We propose for the first time an end-to-end deep
learning scheme for unsupervised video person re-id without imposing any human knowl-
edge on identity information. (II) We formulate a novel Deep Association Learning (DAL)
scheme, with two discriminative association losses derived from (1) local space-time consis-
tency within each tracklet and (2) global cyclic ranking consistency between tracklets across
disjoint camera views. Our DAL loss formulation allows typical deep CNNs to be read-
ily trained by standard stochastic gradient descent algorithms. (III) Extensive experiments
demonstrate the advantages of DAL over the state-of-the-art unsupervised video person re-id
methods on three benchmark datasets: PRID2011 [16], iLIDS-VID [37], and MARS [45].

2 Related Work

Unsupervised Video-based Person Re-identification has started to attract increasing re-
search interest recently [18, 19, 26, 27, 42]. The commonality of most existing methods is
to discover the matching correlations between tracklets across cameras. For example, Ma
et al. [27] formulate a time shift dynamic warping model to automatically pair cross-camera
tracklets by matching partial segments of each tracklet generated over all time shifts. Ye
et al. [42] propose a dynamic graph matching method to mine the cross-camera labels for
iteratively learning a discriminative distance metric model. Liu et al. [26] develop a stepwise
metric learning method to progressively estimate the cross-camera labels; but it requires
stringent video filtering to obtain one tracklet per ID per camera for discriminative model
initialisation. The proposed Deep Association Learning (DAL) method in this work differs
significantly from previous works in three aspects: (1) Unlike [26, 27], our DAL does not
require additional manual effort to select tracklets for model initialisation, which results in
better scalability to large-scale video data. (2) All existing methods rely on a good external
feature extractor for metric learning; while our DAL jointly learns a re-id matching model
with discriminative representation in a fully end-to-end manner. (3) Our DAL uniquely
utilises the intra-camera local space-time consistency and cross-camera global cyclic rank-
ing consistency to formulate the learning objective with a relatively low computational cost.

Deep Metric Learning aims to learn a nonlinear mapping that transforms input images
into a feature representation space, in which the distances within the same class are en-
forced to be small whilst the distances between different classes are maintained large. A
variety of deep distance metric learning methods have been proposed to solve the person
re-id problem [2, 4, 5, 7, 10, 15, 21, 24, 28, 34, 40, 43], among which the most popu-
lar learning constraint is pairwise comparison [21, 43] or triplet comparison [15, 29, 30]
(also known as relative distance comparison [10, 46]). For pairwise comparison, a binary
classification learning objective [2, 21] or a Siamese network with a similarity measure ob-
jective [28, 40, 43] is typically adopted to learn a nonlinear mapping that outputs pairwise
similarity scores. For triplet comparison, a margin-based hinge loss with a batch construc-
tion strategy for triplet generation [10, 15] is often deployed to maximise the relative distance
between matched pairs and unmatched pairs of inputs. As opposed to most supervised deep
metric learning methods in person re-id, our DAL learns a deep embedding representation
in an unsupervised fashion. Instead of grounding the learning objective based on pairwise or
triple-wise comparison between a few labelled samples, e.g., three samples as a triplet, our
DAL uniquely learns two set of anchors as the intra-camera and cross-camera tracklet repre-
sentations, which allows to measure the pairwise similarities between each image frame and
all the tracklet representations to formulate the unsupervised learning objectives.
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Figure 2: Illustration of Deep Association Learning: (a) Intra-camera association learning
based on the local space-time consistency within tracklets (Sec. 3.1). (2) Cross-camera as-
sociation learning based on the global cyclic ranking consistency on cross-camera tracklets
(Sec. 3.2). Best viewed in colour.

3 Deep Association Learning

Approach Overview. Our goal is to learn a re-id matching model to discriminate the ap-
pearance difference and reliably associate the video tracklets across disjoint camera views
without utilising any ID labels. Towards this goal, we propose a novel Deep Association
Learning (DAL) scheme that optimises a deep CNN model based on the learning objective
derived based on two types of consistency. As illustrated in Figure 2, we explore the lo-
cal space-time consistency and global cyclic ranking consistency to formulate two top-push
margin-based association losses. In particular, two sets of “anchors” are gradually learned
all along the training process for our loss formulation. They are (1) a set of intra-camera
anchors {xk,,-}fi‘ | that denote the intra-camera feature representations of Ny tracklets un-
der camera k; and (2) a set of cross-camera anchors {ak,i}f,v:"l, with each representing the
cross-camera feature representation merged by the intra-camera feature representations of
two highly associated tracklets from disjoint camera views. Overall, the DAL scheme con-
sists of two batch-wise iterative procedures: (@) intra-camera association learning and (b)
cross-camera association learning, as elaborated in the following.

3.1 Intra-Camera Association Learning

Intra-camera association learning aims at discriminating intra-camera video tracklets. To
this end, we formulate a top-push margin-based intra-camera association loss in the form of
the hinge loss based on the ranking relationship of each image frame in association to all the
video tracklets from the same camera view. This loss is formulated in three steps as follows.
(1) Learning Intra-Camera Anchors. On account of the local space-time consistency as
depicted Figure 1, each video tracklet can simply be represented as a univocal sequence-level
feature representation by utilising certain temporal pooling strategy, such as max-pooling or
mean-pooling [28, 45]. This, however, is time-consuming to compute at each mini-batch
learning iteration, as it requires to feed-forward all image frames of each video tracklet
through the deep model. To overcome this problem, we propose to represent a tracklet from
camera k as an intra-camera anchor xy ;, which is the intra-camera tracklet representation
incrementally updated by the frame representation f; , of any constituent image frame from
the same source tracklet all through the training process. Specifically, the exponential mov-
ing average (EMA) strategy is adopted to update each anchor x; ; as follows.

A e = (b)) —b(f ), ifi=p (1)
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where 1 refers to the update rate (set to 0.5), £(-) is ¢2 normalisation (i.e. |[£2(-)|l2 = 1),
and 7 is the mini-batch learning iteration. As x; ; is initialised as the mean of the frame rep-
resentations for each tracklet and incrementally updated as Eq. (1), the intra-camera anchor
is consistently learned all along with the model learning progress to represent each tracklet.
(2) Tracklet Association Ranking. Given the set of incrementally updated intra-camera
anchors {xk.,-}?ﬁl for camera k, the ranking relationship of the frame representation f , in
association to all intra-camera anchors from the same camera k can be generated based on
pairwise similarity measure. We use the ¢, distance to measure the pairwise similarities
between an in-batch frame representation fi , and all the intra-camera anchor {xk,i}f.\l‘ 1 Ac-
cordingly, a ranking list is obtained by sorting the pairwise similarities of fj , w.r.t. {xk,,'}f-v:"l,
with the rank-1 (top-1) intra-camera anchor having the minimal pairwise distance:

rankmg

{DP7i|D17,i = ||€2(fk,p fz sz Hz’ l€Nk} Dy = min D, ; 2)

16[1 Nk]

where {D,, ,} *, is the set of pairwise distances between f , and {x, P
the pairwise distance between fi , and the rank-1 tracklet x; .

(3) Intra-Camera Association Loss. Given the ranking list for the frame representation
Ji,p (Eq. (2)), the intra-camera rank-1 tracklet x;, should ideally correspond to the source
tracklet x; ,, that contains the same constituent frame due to the local space-time consistency.
We therefore define a top-push margin-based intra-camera association loss to enforce proper
association of each frame to the source tracklet for discriminative model learning:

i~1> while D), ; denotes

’ [Dp7 p—Dp;+ m] o if p #t (The rank-1 is not the source tracklet)
' [Dpp—Djs+m],, if p=r (The rank-1 is the source tracklet)

where [-]; = max(0, -), D, , is the pairwise distance between f , and x; , (the source
tracklet), Dj, = ﬁ 21}4:1 D is the averaged rank-1 pairwise distance of the M sampled image
frames from camera k in a mini-batch. m is the margin that enforces the deep model to assign
the source tracklet as the top-rank. More specifically, if the rank-1 is not the source tracklet
(i.e. p #1t), L5 will correct the model by imposing a large penalty to push the source tracklet
to the top-rank. Otherwise, £; will further minimise the intra-tracklet variation w.r.t. the
averaged rank-1 pairwise distance in each mini-batch. Since £; is computed based on the
sampled image frames and the up-to-date intra-camera anchors in each mini-batch, it can
be efficiently optimised by the standard stochastic gradient descent to adjust the deep CNN
parameters iteratively. Overall, £; encourages to learn the discrimination on intra-camera
tracklets for facilitating the more challenging cross-camera association, as described next.

3.2 Cross-Camera Association Learning

A key of video re-id is to leverage the cross-camera ID pairing information for model learn-
ing. However, such information is missing in unsupervised learning. We overcome this prob-
lem by self-discovering the cross-camera tracklet association in a progressive way during
model training. To permit learning expressive representation invariant to the cross-camera
appearance variations inherently carried in associated tracklet pairs from disjoint camera
views, we formulate another top-push margin-based intra-camera association loss in the
same form as Eq. (3). Crucially, we extend the tracklet representation to carry the informa-
tion of cross-camera appearance variations by incrementally learning a set of cross-camera
anchors. This intra-camera association loss is formulated in three steps as below.
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(1) Cyclic Ranking. Given the incrementally updated intra-camera anchors (Eq. (1)), we
propose to exploit the underlying relations between tracklets for discovering the association
between tracklets across different cameras. Specifically, a cyclic ranking process is con-
ducted to attain the pair of highly associated intra-camera anchors across cameras as follows.

ranking in cam / ranking back in cam k

7 Dcpy = minje[y ;) Dcy,j = minicy ny

“
¢\Global Cyclic Ranking Consistency: j=i ——2

where Dc,; denotes the cross-camera pairwise distance between two intra-camera anchors:
Xy, p from camera k and x;, from another camera [. Both Dcj,; and Dc, ; denote the rank-1
pairwise distance. The pairwise distance and the ranking are computed same as Eq. (2). With
Eq. (4), we aim to discover the most associated intra-camera anchors across cameras under
the criterion of global cyclic ranking consistency: xi , and x; ; are mutually the rank-1 match
pair to each other when one is given as a query to search for the best-matched intra-camera
anchor in the other camera view. This cyclic ranking process is conceptually related to the
cycle-consistency constraints formulated to enforce the pairwise correspondence between
similar instances [12, 31, 49]. In particular, our global cyclic ranking consistency in this
process aims to exploit the mutual consistency induced by transitivity for discovering the
highly associated tracklets across disjoint camera views all along the model training process.

Xk,i

(2) Learning Cross-Camera Anchors. Based on global cyclic ranking consistency, we
define the cross-camera representation as a cross-camera anchor ay ; by merging two highly
associated intra-camera anchors as depicted in Figure 2 and detailed below.

1
s )2 (52 (xﬁfll) +£ (xfl,)), if j=i (Cyclic ranking consistent)
ki

®

P others

where ay ; is simply a counterpart of x; ;. Each cross-camera anchor is updated as the arith-
metic mean of two intra-camera anchors if the consistency condition is fulfilled (i.e. j =1i),
otherwise as the same intra-camera anchor. As the deep model is updated continuously to
discriminate the appearance difference among tracklets, more intra-camera anchors are pro-
gressively discovered to be highly associated. That is, all along the training process, more
cross-camera anchors are gradually updated by merging the highly associated intra-camera
anchors to carry the information of cross-camera appearance variations induced by the track-
let pairs that come from disjoint camera views but potentially depict the same identities.

(3) Cross-Camera Association Loss. Given the continuously updated cross-camera an-
chors {ak,,»}?i‘l, we define another top-push margin-based cross-camera association loss in
the same form as Eq. (3) to enable learning from cross-camera appearance variations:

’ [Dap, —Dp;+m],, if p7#t (The rank-1is not the source tracklet)
< [Dayp,—Dj;+m],, if p=t (The rank-1 is the source tracklet)

where Da,, , denotes the pairwise distance between the frame representation f; , and the
cross-camera anchor gy, ,. Both D), ; and D, are the same quantities as £; in Eq. (3). As de-
picted in Figure 2 and in the same spirit as £, the cross-camera association loss L¢ enforces
the deep model to push the best-associated cross-camera anchor as the top-rank, so as to
align the frame representation fi , towards the corresponding cross-camera representation.
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3.3 Model Training

Overall Learning Objective. The final learning objective for DAL is to jointly optimise
two association losses (Eq. (3), (6)) as follows.

Lpar =Li+ALc @)

where A is a tradeoff parameter that is set to 1 to ensure both loss terms contribute equally
to the learning process. The margin m in both Eq. (3) and Eq. (6) is empirically set to 0.2 in
our experiments. The algorithmic overview of model training is summarised in Algorithm 1.
Our implementation is available at:

Complexity Analysis. We analyse the per-batch per-sample complexity cost induced by
DAL. In association ranking (Eq. (2)), the pairwise distances are computed between each
in-batch image frame and N, intra-camera anchors for each camera, which leads to a com-
putation complexity of O(Nk) for distance computation and O(Nklog(Nk)) for ranking.
Similarly, in cyclic ranking (Eq. (4)), the total computation complexity is O(Nl +Nk) +
O(Nilog(Ny) + Nilog(Ni)). All the distance measures are simply computed by matrix ma-
nipulation on GPU with single floating point precision for computational efficiency.

Algorithm 1 Deep Association Learning.
Input: Unlabelled video tracklets captured from different cameras.
Output: A deep CNN model for re-id matching.
for = 1 to max_iter do
Randomly sample a mini-batch of image frames.
Network forward propagation.
Tracklet association ranking on the intra-camera anchors (Eq. (2)).
Compute two margin-based association loss terms (Eq. (3), (6)).
Update the corresponding intra-camera anchors based on the EMA strategy (Eq. (1)).
Update the corresponding cross-camera anchors based on cyclic ranking (Eq. (4), (5)).
Network update by back-propagation (Eq. (7)).
end for

4 Experiments

4.1 Evaluation on Unsupervised Video Person Re-ID

Datasets. We conduct extensive experiments on three video person re-id benchmark datasets,
including PRID 2011 [16], iLIDS-VID [37] and MARS [45] (Figure 3). The PRID 2011
dataset contains 1,134 tracklets captured from two disjoint surveillance cameras with 385
and 749 tracklets from the first and second cameras. Among all video tracklets, 200 persons
are captured in both cameras. The iLIDS-VID dataset includes 600 video tracklets of 300
persons. Each person has 2 tracklets from two non-overlapping camera views in an airport
arrival hall. The MARS has a total of 20,478 tracklets of 1,261 persons captured from a
camera network with 6 near-synchronized cameras at a university campus. All the tracklets
were automatically generated by the DPM detector [11] and the GMMCP tracker [8].

Evaluation Protocols. For PRID 2011, following [26, 37, 42] we use the tracklet pairs from
178 persons, with each tracklet containing over 27 frames. These 178 persons are further
randomly divided into two halves (89/89) for training and testing. For iLIDS-VID, all 300
persons are also divided into two halves (150/150) for training and testing. For both datasets,
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(a) PRID 2011 (b) iLIDS-VID
Figure 3: Example pairs of tracklets from three benchmark datasets. Cross-camera varia-
tions include changes in illumination, viewpoints, resolution, occlusion, background clutter,
human poses, etc.

Datasets PRID 2011 iLIDS-VID MARS

Rank@k 1 5 10 20 1 5 10 20 1 5 10 20 [ mAP
DVDL [18] 40.6 69.7 77.8 856|259 482 573 689 | - -

STFV3D [25] 42.1 719 844 916|370 643 770 869 | - -

MDTS-DTW [27] | 41.7 67.1 79.4 90.1 315 621 728 824 | - -

UnKISS [19] 59.2 81.7 90.6 96.1 | 382 65.7 759 84.1 - - - - -
DGM+IDE [42] 564 813 88.0 964|362 628 73.6 827|368 540 61.6 685 | 213
Stepwise [26] 80.9 956 98.8 994 |41.7 663 74.1 80.7|23.6 358 - 449 105
DAL (ResNet50) | 85.3 97.0 98.8 99.6 | 569 80.6 87.3 919|468 639 716 775|214
DAL (MobileNet) | 84.6 96.3 984 99.1 | 528 76.7 83.4 91.6|493 659 722 779 23.0

Table 1: Evaluation on three benchmarks in comparison to the state-of-the-art unsupervised

video re-id methods. Red: the best performance. Blue: the second best performance. *-’: no
reported results.

we repeat 10 random training/testing ID splits as [37] to ensure statistically stable results.
The average Cumulated Matching Characteristics (CMC) are adopted as the performance
metrics. For MARS, we follow the standard training/testing split [45]: all tracklets of 625
persons for training and the remaining tracklets of 636 persons for testing. Both the averaged
CMC and the mean Average Precision (mAP) are used to measure re-id performance on
MARS. Note, our method does not utilise any ID labels for model initialisation or training.

Implementation Details. We implement our DAL scheme in Tensorflow [1]. To evaluate
its generalisation ability of incorporating with different network architectures, we adopt two
standard CNNs as the backbone networks: ResNet50 [14] and MobileNet [17]. Both deep
models are initialised with weights pre-trained on ImageNet [9]. On the small-scale datasets
(PRID 2011 and iLIDS-VID), we apply the RMSProp optimiser [33] to train the DAL for
2x10* iterations, with an initial learning rate of 0.045 and decayed exponentially by 0.94
every 2 epochs. On the large-scale dataset (MARS), we adopt the standard stochastic gra-
dient descent (SGD) to train the DAL for 1x 107 iterations, with an initial learning rate of
0.01 and decayed to 0.001 in the last 5x10* iterations. The batch size is all set to 64. At
test time, we obtain the tracklet representation by max-pooling on the image frame features
followed by ¢, normalisation. We compute the ¢»-distance between the cross-camera tracklet
representations as the similarity measure for the final video re-id matching.

Comparison to the state-of-the-art methods. We compare DAL against six state-of-the-
art video-based unsupervised re-id methods: DVDL [18], STFV3D [25], MDTS-DTW [27],
UnKISS [19], DGM+IDE [42], and Stepwise [26]. Among all methods, DAL is the only un-
supervised deep re-id model that is optimised in an end-to-end manner. Table 1 shows a clear
performance superiority of DAL over all other competitors on the three benchmark datasets.
In particular, the rank-1 matching accuracy is improved by 4.4%(85.3-80.9) on PRID 2011,
15.2%(56.9-41.7) on iLIDS-VID and 12.5%(49.3-36.8) on MARS. This consistently shows
the advantage of DAL over existing methods for unsupervised video re-id due to the joint
effect of optimising two association losses to enable learning feature representation invariant
to cross-camera appearance variations whilst discriminative to appearance difference. Note,
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(a) Evolution on association rate. (b) Evolution on true-match rate.

Figure 4: Evolution on cross-camera tracklet association. The shaded areas denote the vary-
ing range of 10-split results repeated on PRID 2011 and iLIDS-VID. Best viewed in colour.

the strongest existing model DGM+IDE [42] additionally uses ID label information from
one camera view for model initialisation, whilst Stepwise [26] assumes one tracklet per ID
per camera by implicitly using ID labels. In contrast, DAL uses neither of such additional
label information for model initialisation or training. More crucially, DAL consistently pro-
duces similar strong re-id performance with different network architectures (ResNet50 and
MobileNet), which demonstrates its applicability to existing standard CNNs.

4.2 Component Analyses and Further Discussions

Effectiveness of two association losses. The DAL trains the deep CNN model based on the
joint effect of two association losses: (1) intra-camera association loss £; (Eq. (3)) and (2)
cross-camera association loss L¢ (Eq. (3)). We evaluate the individual effect of each loss
term by eliminating the other term from the overall learning objective (Eq. (7)). As shown in
Table 2, jointly optimising two losses leads to the best model performance. This indicates the
complementary benefits of the two loss terms in discriminative feature learning. Moreover,
applying L¢ alone has already achieved better performance as compared to the state-of-the-
art methods in Table 1. When comparing with £;+ L, applying L¢ alone only drop the rank-
1 accuracy by 3.0%(84.6-81.6), 5.4%(52.8-47.4), 1.2%(49.3-48.1) on PRID 2011, iLIDS-
VID, MARS respectively. This shows that even optimising the cross-camera association
loss alone can still yield competitive re-id performance, which owes to its additional effect
in enhancing cross-camera invariant representation learning by reliably associating tracklets
across disjoint camera views all along the training process.

Evolution of cross-camera tracklet association. As aforementioned, learning representa-
tion robust to cross-camera variations is a key to learning an effective video re-id model.
To understand the effect of utilising the cyclic ranking consistency to discover highly as-
sociated tracklets during training, we track the proportion of cross-camera anchors that are
updated to denote the cross-camera representation by merging two highly associated track-
lets (intra-camera anchors). Figure 4(a) shows that on PRID 2011 and iLIDS-VID, 90+%
tracklets find their highly associated tracklets under another camera at the end of training.
On the much noisier large-scale MARS dataset, the DAL can still associate more than half of

Datasets PRID 2011 iLIDS-VID MARS
Rank@k | 1 5 10 20 1 5 10 20 1 5 10 20 [ mAP
L;Only | 627 857 92.1 96.7 |31.7 552 675 78.6|41.6 59.0 662 732 | 16.8

LcOnly | 81.6 952 98.1 99.7 | 474 72.6 815 89.2|48.1 653 714 77.6| 22.6
Li+Lc | 846 963 984 99.1 | 528 76.7 834 91.6|493 659 722 779 23.0

Table 2: Effectiveness of two association losses. Red: the best performance. CNN: Mo-
bileNet.
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Datasets PRID 2011 iLIDS-VID MARS
Rank@k 1 5 10 20 1 5 10 20 1 5 10 20 [ mAP

DAL (L;+Lc) | 84.6 963 984 99.1 | 52.8 76.7 834 91.6|493 659 722 779 23.0
ID-Supervised | 84.3 98.1 992 998 | 51.5 76.0 83.8 899|718 86.8 90.7 933 | 51.5

Table 3: Comparison with supervised counterparts. Red: the best performance. CNN: Mo-
bileNet.

tracklets (>50%) across cameras. Importantly, as seen in Figure 4(b), among self-discovered
associated cross-camera tracklet pairs, the percentage of true-match pairs at the end of train-
ing is approximately 90% on PRID 2011, 75% on iLIDS-VID, and 77% on MARS, re-
spectively. This shows compellingly the strong capability of DAL in self-discovering the
unknown cross-camera tracklet associations without learning from manually labelled data.
Comparison with supervised counterparts. We further compare DAL against the super-
vised counterpart trained using ID labelled data with the identical CNN architecture (Mo-
bileNet), denoted as ID-Supervised. This ID-Supervised is trained by the cross-entropy loss
computed on the ID labels. Results in Table 3 show that: (1) On PRID 2011 and iLIDS-
VID, DAL performs similarly well as the ID-Supervised. This is highly consistent with our
observations of high tracklet association rate in in Figure 4, indicating that discovering more
cross-camera highly associated tracklets can help to learn a more discriminative re-id model
that is robust to cross-camera variations. (2) On MARS, there is a clear performance gap be-
tween the supervised and unsupervised models. This is largely due to a relatively low tracklet
association rate arising from the difficulty of discovering cross-camera tracklet associations
in a larger identity population among much noisier tracklets, as indicated in Figure 4(a).

5 Conclusions

In this work, we present a novel Deep Association Learning (DAL) scheme for unsupervised
video person re-id using unlabelled video tracklets extracted from surveillance video data.
Our DAL permits deep re-id models to be trained without any ID labelling for training data,
which is therefore more scalable to deployment on large-sized surveillance video data than
supervised learning based models. In contrast to existing unsupervised video re-id methods
that either require more stringent one-camera ID labelling or per-camera tracklet filtering,
DAL is capable of learning to automatically discover the more reliable cross-camera tracklet
associations for addressing the video re-id task without utilising ID labels. This is achieved
by jointly optimising two margin-based association losses formulated based on the local
space-time consistency and global cyclic ranking consistency. Extensive comparative exper-
iments on three video person re-id benchmarks show compellingly the clear advantages of
the proposed DAL scheme over a wide variety of state-of-the-art unsupervised video person
re-id methods. We also provide detailed component analyses to further discuss the insights
on how each part of our method design contributes towards the overall model performance.
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