Deep Association Learning for Unsupervised Video Person Re-identification

Yanbei Chen\(^1\) Xiutian Zhu\(^2\) Shaogang Gong\(^1\)

yanbei.chen@qmul.ac.uk eddy@visionsemantics.com s.gong@qmul.ac.uk

\(^1\)Queen Mary University of London \(^2\)Vision Semantics Ltd., London, UK

Introduction

Video Person Re-identification (ReID)

A task to match person identities (ID) in the video tracklets (sequences) captured from disjoint surveillance camera views.

Unsupervised Video Person ReID

- **Problem**
 - How to formulate supervision signals without utilizing any pairwise ID matching information to guide model learning?

- **Main Contributions**
 - End-to-end deep unsupervised learning framework for video ReID: none manual labelled supervision is given for model training.
 - State-of-the-art results on various video ReID benchmark datasets.

Methodology Overview

Deep Association Learning

- **Overall idea**
 - Learning by (1) intra-camera image-to-tracklet association and (2) cross-camera tracklet-to-tracklet association

Two types of association learning

1) **Intra-Camera Association Learning**
 - image-to-tracklet association under the same camera view
 - exploit the inherent label information for supervision

2) **Cross-Camera Association Learning**
 - tracklet-to-tracklet association across disjoint camera views
 - mitigate the cross-camera domain gaps

Intra-Camera Association Learning

Key Idea:

intra-camera image-to-tracklet association

Local Space-Time Consistency

Batch-wise three iterative steps

1) **Learning Intra-Camera Anchors**
 - Represent each tracklet as a learnable anchor

 \[x_{k,i}^{t+1} = x_{k,i}^t - \eta \cdot (f_2(x_{k,i}^t) - f_1(x_{k,i}^t)) \]

 if \(i = p \)

2) **Tracklet Association Ranking**
 - Rank all anchors in each camera view

 \[D_{p,i} = \min_{i \in [1,N_i]} \| f_2(x_{k,i}^t) - f_1(x_{k,i}^t) \|_2 \]

3) **Intra-Camera Association Loss**
 - Associate each frame with its own source tracklet

 \[L_i = \begin{cases}
 [D_{p,i} - D_{p,j} + m]_+, & \text{if } p \neq t \text{ (The rank-1 is not the source tracklet)} \\
 [D_{p,i} - D_{j,i} + m]_+, & \text{if } p = t \text{ (The rank-1 is the source tracklet)}
 \end{cases} \]

Cross-Camera Association Learning

Key Idea:

cross-camera tracklet-to-tracklet association

Batch-wise three iterative steps

1) **Cyclic Ranking**
 - Discover highly associated tracklets across disjoint camera views

 \[D_{c,i,j} = \min_{i \in [1,N_i]} \| f_2(x_{k,i}^t) - f_1(x_{k,j}^t) \|_2 \]

2) **Learning Cross-Camera Anchors**
 - Merge two highly associated tracklets as a cross-camera anchor

 \[x_{k,i,j}^{t+1} = \frac{1}{2} \cdot \begin{cases}
 f_2(x_{k,i}^t) + f_1(x_{k,j}^t) & \text{if } j = i \text{ (Cyclic ranking consistent)} \\
 x_{k,i}^t, & \text{others}
 \end{cases} \]

3) **Cross-Camera Association Loss**
 - Associate each frame with the best-matched cross-camera anchor

 \[L_c = \begin{cases}
 [D_{p,i} - D_{p,j} + m]_+, & \text{if } p \neq t \text{ (The rank-1 is not the source tracklet)} \\
 [D_{p,p} - D_{j,i} + m]_+, & \text{if } p = t \text{ (The rank-1 is the source tracklet)}
 \end{cases} \]

Experiments & Ablation Studies

Comparison to state-of-the-art unsupervised video ReID methods

Evolution of cross-camera tracklet association

(a) Evolution on association rate.
(b) Evolution on true-match rate.