
Research question
Ø How could we transfer knowledge across heterogeneous data

modalities to learn more powerful representations?

Main challenges
Ø cross-modal content may not be semantically correlated:

• e.g visual content is applying lipstick, while audio content is music.
Ø audio, image, video data exhibit heterogeneous characteristics:

• encoding temporal, spatial, and spatiotemporal information.

Main idea
v compositional contrastive learning
ü compose different modalities to close cross-modal semantic gap
ü contrastive learning across all modalities in a shared latent space 
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Figure 2. Approach overview of compositional contrastive learning (CCL). 

qUnimodal representations of audio and vision
§ audio recordings→ 1D audio teacher network → audio embeddings
§ image frames → 2D image teacher network → image embeddings
§ video clips → 3D video student network → video embeddings

qCompositional multi-modal representation
§ composition of teacher, student embeddings to bridge the semantic gap

qCompositional contrastive learning
§ contrastive learning to transfer multi-modal knowledge
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A new benchmark on multi-modal distillation

Take-home message:
• distilling audio or visual knowledge helps video recognition/retrieval
• audio and visual knowledge are complementary

Ø a new approach for distilling audio-visual knowledge
Ø state-of-the-art performance on multi-modal distillation benchmark

• Hinton et al. Distilling the Knowledge in a Neural Network. NeuRIPSW2014
• Gupta et al. Cross Modal Distillation for Supervision Transfer, CVPR2016
• Tian et al. Contrastive Representation Distillation. ICLR2020; Contrastive Multiview Coding. ECCV2020
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Table1. Video recognition (top1 acc %)
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Figure 1. Retrieval on VGGSound.

Figure 2. Qualitative results for video retrieval.


