

Introduction

Research question

> How could we transfer knowledge across heterogeneous data modalities to learn more powerful representations?

Main challenges

 \succ cross-modal content may not be semantically correlated:

- e.g visual content is *applying lipstick*, while audio content is *music*.
- \succ audio, image, video data exhibit heterogeneous characteristics:
- encoding temporal, spatial, and spatiotemporal information.

Main idea

compositional contrastive learning

 \checkmark compose different modalities to close cross-modal semantic gap \checkmark contrastive learning across all modalities in a shared latent space

Distilling Audio-Visual Knowledge by Compositional Contrastive Learning

Yanbei Chen¹, Yongqin Xian², A. Sophia Koepke¹, Ying Shan³, Zeynep Akata^{1,2,4} ¹University of Tübingen ²MPI for Informatics ³ARC, Tencent PCG ⁴MPI for Intelligent Systems

Unimodal representations of audio and vision

- audio recordings \rightarrow 1D audio teacher network \rightarrow audio embeddings
- image frames \rightarrow 2D image teacher network \rightarrow image embed
- video clips \rightarrow 3D video student network \rightarrow video embeddings

Compositional multi-modal representation

composition of teacher, student embeddings to bridge the semantic gap

$$\mathcal{F}_{av}(x_a, x_v) = x_{av} = x_a + \underline{f_{\theta_{av}}(x_a, x_v)}$$
 and $\mathbf{F}_{av}(x_a, x_v) = x_{av} + \underline{f_{\theta_{av}}(x_a, x_v)}$

 $\mathcal{L}_{ce}^{av}(x_{av},k)$ — constrained by task objective

Compositional contrastive learning

contrastive learning to transfer multi-modal knowledge $-\log \frac{\exp(\Phi(x_{v(i)}, x_{a(i)})/\tau)}{\sum_{i=1}^{B} \exp(\Phi(x_{v(j)}, x_{a(j)}))/\tau)} = -\log p_{av(i)} \quad \text{contrastive loss (NCE)}$ $\mathcal{L}_{nce}(x_v, x_a) = -\frac{1}{B_p} \sum_{i=k} \log p_{av(j)} - \frac{1}{B_n} \sum_{i \neq k} \log(1 - p_{av(j)}) \text{ multi-class NCE}$ $\mathcal{L}_{a}(x_{v}, x_{a}, x_{av}) = \lambda \mathcal{L}_{nce}(x_{v}, x_{a}) + (1 - \lambda) \mathcal{L}_{nce}(x_{v}, x_{av})$ audio distillation $\mathcal{L}_i(x_v, x_i, x_{iv}) = \lambda \mathcal{L}_{nce}(x_v, x_i) + (1 - \lambda) \mathcal{L}_{nce}(x_v, x_{iv})$ image distillation

transfer visual knowledge?

transfer audio knowledge?

- add a learnable esidual

A new benchmark on multi-modal distillation

Method	UCF51			
	A	Ι	AI	
baseline	57.5	57.5	57.5	
FitNet	48.4	67.4	62.4	
PKT	53.2	58.2	62.0	
COR	57.7	65.5	66.3	
RKD	53.0	55.4	58.2	
CRD	60.3	61.4	63.2	
IFD	56.3	54.2	64.2	
CMC	59.2	60.4	63.1	
CCL	64.9	69.1	70.0	

Take-home message:

a new approach for distilling audio-visual knowledge > state-of-the-art performance on multi-modal distillation benchmark

Experiments

Figure 2. Qualitative results for video retrieval.

 distilling audio or visual knowledge helps video recognition/retrieval audio and visual knowledge are complementary

Conclusion

References

Hinton et al. Distilling the Knowledge in a Neural Network. NeuRIPSW2014 • Gupta et al. Cross Modal Distillation for Supervision Transfer, CVPR2016 • Tian et al. Contrastive Representation Distillation. ICLR2020; Contrastive Multiview Coding. ECCV2020