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Semi-Supervised Deep Learning with Memory
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Problem & Motivation

q Semi-supervised multi-class classification is a task of learning
from sparse labelled and abundant unlabelled training data.

q The goal of semi-supervised learning is to boost the model 
performance by utilising the large amount of unlabelled data 
when only a limited amount of labelled data is available.

Key Contribution

q A novel Memory-Assisted Deep Neural Network
characterised by a memory mechanism that permits the deep 
model to additionally learn from its memory (assimilation) and 
adjust itself to fit optimally the incoming training data 
(accommodation) incrementally.

Main Ideas

q Memory of model learning:
Ø (1) class-level feature representation (key embedding):

represent the cluster centroid dynamically evolving in the 
feature space 

Ø (2) class-level predictive uncertainty (value embedding):
encode model inference uncertainty accumulatively revealed by
the preceding training iterations

q Memory loss:
Ø (1) penalise class distribution overlap 

Ø (2) encourage network predictions to be consistent with 
confident memory predictions

. 
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Figure 1. Illustration of the Memory-Assisted Deep Neural Network, which is
inspired by the spirit of Piaget’s theory on human’s ability of continual learning.

Figure 2. An Overview of the Memory-Assisted Deep Neural Network.
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Figure 3. Evolution of memory predictions on the unlabelled samples.
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Figure 5. Evolution of the value embeddings.
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Figure 4. Evolution of the key embeddings.

Table 1. Comparison with the state-of-the-art SSL methods.
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Experiments on three benchmark datasets

Evolution of the memory module
§ key embeddings: capture the global manifold structure for  

deriving probabilistic assignments based on cluster assumption

§ value embeddings: capture the model inference uncertainty to 
smooth the memory predictions with uncertainty

Main components

Ø Conventional Deep Neural Network
Ø Memory Module

(678, :;<=7) pairs: iteratively updated by gradients

Ø Assimilation-Accomodation Interaction 
(1) Memory Assimilation: derive memory prediction

key addressing & value reading

(2) Accommodation: derive memory loss
Model Entropy (ME) + Memory-Network Divergence (MND)

Final semi-supervised learning objective
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